• Title/Summary/Keyword: Mass Properties

Search Result 2,710, Processing Time 0.036 seconds

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Aerosol Mass Spectrometer (AMS)-Based Real-Time Physicochemical Characterization of Atmospheric Aerosols

  • Kim, Donghwi
    • Mass Spectrometry Letters
    • /
    • v.13 no.2
    • /
    • pp.27-34
    • /
    • 2022
  • Atmospheric aerosols have become a major environmental concern because of their adverse effects on human health, air quality, and climate change. Over the last few decades, several mass spectrometry (MS)-based techniques have been developed and applied in the field of atmospheric aerosol research. Particularly, real-time measurement of ambient aerosols using an aerosol mass spectrometer (AMS) has become one of the most powerful tools for aerosol chemistry. This review provides a brief description of AMS and its applications for understanding the physicochemical properties of atmospheric aerosols, as well as its sources and evolution processes.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

Properties of Galaxies in Cosmic Filaments around the Virgo Cluster

  • Lee, Youngdae;Kim, Suk;Rey, Soo-Chang;Chung, Jiwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2020
  • We present the properties of galaxies in filaments around the Virgo cluster with respect to their vertical distance from the filament spine. Using the NASA-Sloan Atlas and group catalogs, we select galaxies that do not belong to groups in filaments. The filament member galaxies are then defined as those located within 3.5 scale length from the filament spine. The filaments are mainly (~86%) composed of low-mass dwarf galaxies of logh2M∗/M⊙ < 9 dominantly located on the blue cloud in color-magnitude diagrams. We observe that the g - r color and stellar mass of galaxies correlate with their vertical distance from the filament spine in which the color becomes red and stellar mass decreases with increasing vertical filament distance. The galaxies were divided into two subsamples in different stellar mass ranges, with lower-mass (logh2M∗/M⊙ ≤ 8) galaxies showing a clear negative g-r color gradient, whereas higher-mass (logh2M∗/M⊙ > 8) galaxies have a flat distribution against the vertical filament distance. We observe a negative EW(Hα) gradient for higher-mass galaxies, whereas lower-mass galaxies show no distinct variation in EW(Hα) against the vertical filament distance. In contrast, the NUV - r color distribution of higher-mass galaxies shows no strong dependence on the vertical filament distance, whereas the lower-mass galaxies show a distinct negative NUV - r color gradient. We do not witness clear gradients of HI fraction in either the higher- or lower-mass subsamples. We propose that the negative color and stellar mass gradients of galaxies can be explained by mass assembly from past galaxy mergers at different vertical filament distances. In addition, galaxy interactions might be responsible for the contrasting features of EW(Hα) and NUV - r color distributions between the higher- and lower-mass subsamples. The HI fraction distributions of the two subsamples suggest that ram-pressure stripping and gas accretion could be ignorable processes in the Virgo filaments.

  • PDF

Effect of Vertical Change of the Rock Mass Characteristics on Rock Mass Classification by Numerical Analysis (암반특성의 수직변화가 암반분류에 미치는 영향에 관한 수치해석적 연구)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Woo, Sung-Won;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.476-479
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the vertical direction. However, such case is seldom encountered in practice and not applicable when the properties vary along the vertical direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the vertical direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$(vertical direction) on the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Characterization of ABS/PC/POE Thermoplastic Composites and Prediction of Mechanical Properties by Geometry Simulation (ABS/PC/POE 열가소성 복합재료의 특성평가 및 시뮬레이션을 통한 물리적 성능 예측 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Yeo, Dong-Hyun;Shin, Yong-Ho;Park, Jong-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • In this study, thermoplastic composites were manufactured using ABS(acrylonitrile butadiene styrene), PC(polycarbonate), and POE(polyolefin elastomer), which are thermoplastic plastics. Twin screw extruder and injection molding were used to manufacture thermoplastic composites. When the ABS/PC/POE thermoplastic composite material was manufactured, the POE mass fraction was set to 1 to 5 wt.%, and the thermal and mechanical properties according to the POE mass fraction were analyzed. Based on the physical properties of ABS/PC/POE, a 3D model in the form of an e-bike frame was created. After setting the boundary conditions, when an external load is applied, geometry simulation was performed to predict product performance. The ABS/PC/POE thermoplastic composite material exhibited the best physical properties when the mass fraction of POE was 3 wt.%. In the simulation results for the physical properties of the 3D model in the form of an e-bike frame, the best physical properties were shown when the mass fraction of POE was 2 ~ 3 wt.%. As a result, the manufacturing conditions for ABS/PC/POE thermoplastic composite materials were set, and research was conducted to reduce product development costs and development time.

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

REVALUATION OF (지공학적 암반분류의 재평가)

  • 김교원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.33-40
    • /
    • 1993
  • The Bieniawski's geomechanics classification system(1984) is widely employed as a tool of engineering evaluation of rock masses for tunnel design. Since the siz parameters adoped in the system are believed to control the engineering behavior of rock mass under an external load, no question may be raised to the conceptional idea immanent in the system. However, the rating grade for each individual parameter given in the system may be properly measured since an engineering property of rock mass is not stepwise changed but continuously changed. In order to get the proper rating grade based upon the continuously changed properties in each parameter, several equations presented in this paper are obtained through regration analyses with the grades and median values of properties givne in the system. A FORTRAN computer program given in the paper could provide not only RMR value but also rock mass properties (E, c, o, v, etc.) using the empirical equations.

  • PDF

Estimating Black Hole Mass in Active Galactic Nuclei with Hydrogen Brackett lines

  • Kim, Do-Hyeong;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.32.2-32.2
    • /
    • 2010
  • Red dusty Active Galactic Nuclei (AGNs) are suspected to mid-stage between ULIRG and AGN phase. As well as, they are suspected that they have more than 50% of AGN population. To understand character of red AGN, Black Hole (BH) mass of red AGN is a key property and haven't measured by existing method such as reverberation mapping and single epoch method. So we still don't know their character and properties clearly. To estimate properties of red AGNs escape from effect of dust-obscuration, we have obtained Near InfraRed (NIR) spectra of 31 reverberation mapped AGNs and 49 Palomar-Green(PG) Quasi-Stellar Object (QSO) using the infrared camera (IRC) for AKARI with unique wavelength range 2.5-$5.0{\mu}m$. From this spectra, we measured the FWHM and luminosity of brackett ${\alpha}$, ${\beta}$ at 4.0, 2.6 micron meter for deriving new BH mass estimators based on the properties of Brackett line emission.

  • PDF

Heat and Mass Transfer Properties of Mm-Based Metal Hydride upon Co Content (Mm계 금속수소화물의 Co함량에 따른 열 및 물질전달특성)

  • Park, Chan-kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • The effect of the cobalt content on the thermodynamic and, heat and mass transfer properties of the $MmNi_{5-y}B_{y-z}C_z(y=0.5{\sim}1.5,\;z=0.5)$hydrogen storage alloys has been studied systematically. The P-C isotherms curves show that with increasing cobalt content in the alloys, the plateau pressure of the hydrogen absorption and desorption and enthalpy(${\Delta}H$) increases steeply and the plateau region becomes flat, while entropy(${\Delta}S$) decreases. Also at the constant cobalt content the hydrogen transfer rate decreases with the reaction temperature, while the initial reaction kinetics increases. But the initial reaction with hydrogen completes within 1min, although the reaction proceeds about 30minutes thereafter.