• Title/Summary/Keyword: Mass Efficiency

Search Result 1,891, Processing Time 0.124 seconds

Review on Thermal Storage Media for Cavern Thermal Energy Storage (지하공동 열에너지 저장을 위한 축열 매질의 기술 현황 검토)

  • Park, Jung-Wook;Park, Do-Hyun;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.243-256
    • /
    • 2012
  • Developing efficient and reliable energy storage system is as important as exploring new energy resources. Energy storage system can balance the periodic and quantitative mismatch between energy supply and energy demand and increase the energy efficiency. Industrial waster heat and renewable energy such as solar energy can be stored by the thermal energy storage (TES) system at high and low temperatures. TES system using underground rock carven is considered as an attractive alternative for large-scale storage, because of low thermal conductivity and chemical safety of surrounding rock mass. In this report, the development of available thermal energy storage methods and the characteristics of storage media were introduced. Based on some successful applications of cavern storage and high-temperature storage reported in the literature, the applicabilities and practicabilities of storage media and technologies for large-scale cavern thermal energy storage (CTES) were reviewed.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

Pressure Drop Characteristics of Air Particle Flow in Powder Transport Piping System (파우더 수송시스템의 공기입자 유동 압력강하 특성)

  • Kim, Jong-Soon;Chung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kwon, Soon-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.157-168
    • /
    • 2017
  • The pressure drop characteristics of air particle flow in a powder transport piping system were analyzed in this study. The pressure drop characteristics of air particle flow in the piping system have not well understood due to the complexibility of particle motion mechanism. Particles or powders suspended in the air flow cause the increase of the pressure drop and affect directly transport efficiency. In this study, the pressure drop in a powder transport piping system was analyzed with interactions of air flow and particle motion in straight and curved pipes. The total pressure drop increased with pipe length, mixture ratio, and friction factor of particles because of increased friction loss of air and particles in the piping system. For the coal powders of $74{\mu}msize$ and powder-to-air mass mixture ratio of 0.667, the total pressure drop under the consideration of powders and air flow was calculated as much as 30% higher than that air flow only.

A Study for the Implementation of the DICOM Toolkit Software (DICOM 툴킷 소프트웨어 구현에 관한 연구)

  • Shin Dong Kyu;Kim Dong Youn;Kim Dong Sun
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.481-486
    • /
    • 2003
  • This paper describes the implementation of the toolkit software for the DICOM. the international standards of medical imaging. Well known toolkits do not have the functions related to imaging or ported to Windows OS after developed at UNIX OS or do not have mechanism for the speed and memory management or have complicated structure comes from DICOMI complexity. The toolkit introduced in this paper was designed for the hospital environments. It handles mass images at Windows based PC system. supports multi-threading to enhance the efficiency. supports every functions in Object Oriented Programming style needed at clinical application which makes the rapid development of the DICOM related applications. The results says that the toolkit can display 50 CT, 50 MR, 10 CR and 10 DX images in 12 seconds and occupy small quantity of physical memory at usual PC system.

A Study of Design of Hollow Fiber Membrane Modules for using in Artificial Lung by the PZT Actuator

  • Kim, Gi-Beum;Kim, Seong-Jong;Hong, Chul-Un;Lee, Yong-Chul;Kim, Min-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.143-153
    • /
    • 2006
  • The purpose of this work was to assess and quantify the beneficial effects of gas exchange, while testingto the various frequencies of the sinusoidal wave that was excited by the PZT actuator, for patients suffering from acute respiratory distress syndrome (ARDS) or chronic respiratory problems. Also, this paper considered a simulator to design a hollow type artificial lung, and a mathematical model was used to predict a behavior of blood. This simulation was carried out according to the Montecarno's simulation method, anda fourth order Runge-Kutta method was used to solve the equation. The experimental design and procedure are then applied to the construction of a new device to assess the effectiveness of the membrane vibrations. As a result, the vibration method is very effective in the increase of gas transport. The gas exchange efficiency for the vibrating intravascular lung assist device can be increased by emphasizing the following design features: consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of water around the hollow fiber membranes. The experimental results showed the effective performance of the vibrating intravascular lung assist device. Also, we concluded that important design parameters were blood flow rates, fiber outer diameter and oxygen pressure drop. Based on the present results, it was believed that the optimal level of blood flow rates was 200$cm^3$/min.

Performance analysis for load control of R744(carbon dioxide) transcritical refrigeration system using hot gas by-pass valve (핫가스 바이패스 밸브를 이용한 R744용 초임계 냉동사이클의 부하제어에 대한 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2189-2194
    • /
    • 2009
  • The automatic hot gas by-pass technique is applied to control the capacity of refrigeration and air-conditioning system when operating at part load. In the scheme, the hot gas from the compressor is extracted and injected into the outlet of an evaporator through a hot gas by-pass valve. Thus, In this paper, the hot gas by-pass scheme for CO2 is discussed and analyzed on the basis of mass and energy conservation law. A comparative study of the schemes is performed in terms of the coefficiency of performance (COP) and cooling capacity. The operating parameters considered in this study include compressor efficiency, superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : the superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Analysis on the creep response of bolted rock using bolted burgers model

  • Zhao, Tong-Bin;Zhang, Yu-Bao;Zhang, Qian-Qing;Tan, Yun-Liang
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this paper, the creep behavior of bolted rock was analyzed by using the unconfined creep tests and the numerical results. Based on the test results, the Bolted Burgers creep model (B-B model) was proposed to clarify the creep mechanism of rock mass due to rock bolts. As to the simulation of the creep behaviour of bolted rock, a new user-defined incremental iterative format of the B-B model was established and the open-source $FLAC^{3D}$ code was written by using the object-oriented language (C++). To check the reliability of the present B-B creep constitutive model program, a numerical model of a tunnel with buried depth of 1000 m was established to analyze the creep response of the tunnel with the B-B model support, the non-support and the bolt element support. The simulation results show that the present B-B model is consistent with the calculated results of the inherent bolt element in $FLAC^{3D}$, and the convergence deformation can be more effectively controlled when the proposed B-B model is used in the $FLAC^{3D}$ software. The big advantage of the present B-B creep model secondarily developed in the $FLAC^{3D}$ software is the high computational efficiency.

A Historical Reappraisal on the Standardized Testing in the US Education Focusing on the Role of the Carnegie Foundation for the Advancement of Teaching (미국교육에서 표준화시험의 역사적 전개와 시사점: 카네기재단의 역할)

  • Lee, Yoonmi
    • Korean Journal of Comparative Education
    • /
    • v.28 no.4
    • /
    • pp.51-82
    • /
    • 2018
  • This study examines the history and current debates on the standardized testing in the United States, particularly focusing on the role that the Carnegie Foundation for the Advancement of Teaching (CFAT) played in the process. It discusses the particular history of the United States associated with the pragmatic and scientific culture, rise of mass secondary education, and the social efficiency movement as the backdrop of the expansion of standardized testing. The role of the CFAT in this movement is investigated as to the way it contributed to setting standards for American secondary and higher education through promoting standardized tests such as SAT and GRE, and by establishing the ETS, a highly influential testing agency. The underlying educational assumptions and practices in standardized testing are critically examined in light of a more personal or context-bound and social justice-oriented paradigm for educational evaluation.

A Preliminary Configuration Design of Methane/Oxygen Bipropellant Small-Rocket-Engine through Theoretical Performance Analysis (이론성능해석에 의한 메탄/산소 이원추진제 소형로켓엔진의 예비형상설계)

  • Bae, Seong Hun;Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Design parameters required for Methane/oxygen bipropellant small-rocket-engine were derived through a theoretical performance analysis. The theoretical performance of the rocket engine was analyzed by using CEA and optimal propellant mixture ratio, characteristic length, and optimal expansion ratio were calculated by assuming chemical equilibrium. A coaxial-type swirl injector was chosen because of its outstanding atomization performance and high combustion efficiency compared to other types of injector and also a bell nozzle with 80% of its full length was designed. The rocket engine configuration with 1.72 MPa of chamber pressure, 0.18 kg/s in total propellant mass flow, and O/F ratio of 2.7 was proposed as a ground-firing test model.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.