• Title/Summary/Keyword: Mass Efficiency

Search Result 1,891, Processing Time 0.034 seconds

A Study on Data Recording and Play Method between Tactical Situations to Ensure Data Integrity with Data Link Processor Based on Multiple Data Links (다중데이터링크 기반에서 데이터링크 처리기와의 데이터 무결성 보장을 위한 전술상황전시기 간 데이터 기록 및 재생 방법 연구)

  • Lee, Hyunju;Jung, Eunmi;Lee, Sungwoo;Yeom, Jaegeol;Kim, Sangjun;Park, Jihyeon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.13-25
    • /
    • 2017
  • Recently, the high performance of tactical situation display console and tactical data links are used to integrate the operational situations in accordance with information age and NCW (Network Centric Warfare). The tendency to maximize the efficiency of task execution has been developed by sharing information and the state of the battle quickly through complex and diverse information exchange. Tactical data link is a communication system that shares the platform with core components of weapons systems and battlefield situation between the command and control systems to perform a Network Centric Warfare and provides a wide range of tactical data required for decision-making and implementation.It provides the tactical information such as tactical information such as operational information, the identification of the peer, and the target location in real time or near real time in the battlefield situation, and it is operated for the exchange of mass tactical information between the intellectuals by providing common situation recognition and cooperation with joint operations. In this study, still image management, audio file management, tactical screen recording and playback using the storage and playback, NITF (National Imagery Transmission Format) message received from the displayer integrates the tactical situation in three dimensions according to multiple data link operation to suggest ways to ensure data integrity between the data link processor during the entire operation time.

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).

Agricultural support and solidarity devices development (농작물 버팀 지지용 대 및 결속 장치)

  • Han, Seung-Chul;Kim, Jin-Ho;Lee, Man-Gi;Lee, Seung-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5945-5949
    • /
    • 2014
  • The rural population is aging and farmers need to aim for mass production. This study examined the work efficiency of clamping and protecting crops. Strong winds are a risk for damage, but there are no reports of studies of the geometric design problem for vegetation. The accuracy of the simulation to obtain a load applied to the actual support and index was examined. The model was selected according to its strength based on the reliability of the simulation. Also acts in force of 0.1N to 0.6N, which can withstand the force of 1.29N with the results of this thesis research. The fixed clamp fixing for agricultural crops designed as a support was examined. These results are expected to help shorten working hours, and improve the growth of crops and disaster prevention.

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

Phytoremediation Study of Disel Contaminated Soil by Indigenous Poplar Tree (국내 자생 포플러나무에 의한 디젤오염토양 정화특성 연구)

  • Chaog Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.51-58
    • /
    • 2006
  • In this study, uptake and toxicity of disel (TPH) by poplar specie, $P.\;nigra{\times}P.\;maximowiczii$ were assessed in laboratory soil column experiments. Poplar cuttings were grown for 2 months and exposed to various concentration (0, 200, 500, 1000, 2000 mg/kg) of disel for a period of 60 days. For disel removal experiments, disel was effectively removed in the range of lower concentration. but, the removal rate of disel was rapidly decreased as increasing initial disel concentrations. For the this reason, toxicity effetcs were evaluated by measuring in poplar cutting mass variation and monitoring transpiration. Exposure on higher disel concentration resulted in decrease of biomass and transpiration accompanied by chlorosis and abscission, indicating toxic effect of disel on the poplar tree. And also, we have observed that both removal efficiency of disel and the microbial activity were higher at the bottom of the soil column. It was suggested that the plant formed the root zone at contaminated soil, stimulated microbial activity by plant root exudates, and played an important role in enhanced biodegradation of disel.

Effect of Hydrophilic Polymers on the Release of BCNU from BCNU-loaded PLGA Wafer (친수성 고분자가 BCNU 함유 PLGA 웨이퍼로부터 BCNU의 방출에 미치는 효과)

  • 안태군;강희정;문대식;이진수;성하수
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.670-679
    • /
    • 2002
  • 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is one of the effective chemotherapeutic agents which has been used clinically for treating malignant glioma. Poly(D,L-lactide-co-glycolide) (PLGA, molecular weight: 20000 g/mole. mole ratio of lactide to glycolide 75 : 15) is a well known biodegradable polymer used as a drug carrier for drug delivery system. In this study, we investigated the BCNU release behaviour of BCNU-loaded PLGA wafers containing poly (N-vinylpyrrolidone) (PVP) or polyethyleneoxide (PEO) and the effect of hydrophilic polymers incoporated in the wafers. BCNU-loaded PLGA microparticles with or without hydrophilic polymers were prepared by a spray drying method and fabricated into wafers by direct compression. Encapsulation efficiency of BCNU-loaded PLGA microparticles containing PVP and PEO was 85 ∼ 97% and crystallinity of BCNU encapsulated in PLGA decreased significantly initial release amount and release rate of BCNU increased with the increasing PVP or PEO amount. Morphological change and mass loss of wafers during the release test were confirmed that hydration and degradation of PLGA would be facilitated with an increase of hydrophilic polymers.

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases

  • Abdullahi, Adamu;Ahmad, Khairulmazmi;Ismail, Intan Safinar;Asib, Norhayu;Haruna, Osumanu;Abubakar, Abubakar Ismaila;Siddiqui, Yasmeen;Ismail, Mohd Razi
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.515-535
    • /
    • 2020
  • Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.

Case Study on In-situ Stress Measurement by Over-coring and Its Application to Design of a Pumped Storage Power Plant (오버코어링법에 의한 초기지압측정 및 양수발전소 설계적용사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Lee, Young-Nam
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.90-101
    • /
    • 2007
  • With increasing development of underground space, underground pumped storage power plants, which generate power by felling water in upper reservoir to lower reservoir, have been continuously constructed. For efficient and safe design, construction and maintenance or such power plants, it is very important to understand in-situ stress and the mechanical properties of the surrounding rock mass at the design stage. The power plant presented in this paper is under construction at a depth of $320{\sim}375m$. For stability evaluation of the structure, in-situ stress was measured by over-coring method. Also pressurementer test and a series or laboratory tests were performed to obtain the mechanical properties. Numerical analyses were conducted to check the efficiency of designed support patterns. The results showed that unstable areas occurred partly in the numerical model, and therefore supports were additionally applied. Finally complete stability was obtained and the following excavation has been operated successfully until now.

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • Jeong, Min-Bok;Jo, Sam-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF