• Title/Summary/Keyword: Mass Disaster

Search Result 235, Processing Time 0.024 seconds

Numerical study on Floor Response Spectrum of a Novel High-rise Timber-concrete Structure

  • Xiong, Haibei;Zheng, Yingda;Chen, Jiawei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.273-282
    • /
    • 2020
  • An innovative high-rise timber-concrete hybrid structure was proposed in previous research, which is composed of the concrete frame-tube structure and the prefabricated timber modules as main structure and substructures, respectively. Considering that the timber substructures are built on the concrete floors at a different height, the floor response spectrum is more effective in estimating the seismic response of substructures. In this paper, the floor response spectra of the hybrid structure with different structural parameters were calculated using dynamic time-history analysis. Firstly, one simplified model that can well predict the seismic response of the hybrid structure was proposed and validated. Then the construction site, the mass ratio and the frequency ratio of the main-sub structure, and the damping ratio of the substructures were discussed. The results demonstrate that the peaks of the floor response spectra usually occur near the vibration periods of the whole structure, among which the first two peaks stand out; In most cases, the acceleration amplification effect on substructures tends to be more evident when the construction site is farther from the fault rupture; On the other hand, the acceleration response of substructures can be effectively reduced with an appropriate increase in the mass ratio of the main-sub structure and the damping ratio of the substructures; However, the frequency ratio of the main-sub structure has no discernible effect on the floor response spectra. This study investigates the characteristics of the floor response spectrum of the novel timber-concrete structure, which supports the future applications of such hybrid structure in high-rise buildings.

Contrast Analysis for CBRN attacks on educational research and best practices (테러대비를 위한 CBRNE교육 선진사례 분석에 관한 연구)

  • Kim, Tae hwan;Park, Dae woo;Hong, Eun sun
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.1
    • /
    • pp.78-100
    • /
    • 2009
  • This study is to protect peoples' life, minimize the property damage by coping with threats quickly and take more preventive measures in advance against nuclear bomb, CBR, and potential explosive. For this, CBRNE(Chemical, Biological, Radiological, Nuclear, Explosive) program research was used. Thanks to advance in technology, terrorist groups and even individuals make or keep nuclear and CBR weapons. And also it's likely that disaster and threats from a toxic gas, acute pathogens, accidents in the nuclear power plants and a high explosive could be happened a lot. Recently more organized terrorist groups maintain random attacks for unspecified individuals and also it's highly likely that a large-scale terrorist attack by WMD and CBRNEwill be done. To take strict measures against CBRNE attacks by terrorists is on the rise as an urgent national task. Moreover biological weapons are relatively easy and inexpensive to obtain or produce and cause mass casualties with a small amount. For this reason, more than 25 countries have already possessed them. In the 21 st century, the international safety environment marks the age of complicated threats : transnational threats such as comprehensive security and terror, organized crime, drug smuggling, illegal trade of weapons of mass destruction, and environmental disruption along with traditional security threats. These cause military threats, terror threats, and CBRNE threats in our daily life to grow. Therefore it needs to come up with measures in such areas as research development, policy, training program. Major industrial nations on CBRNE like USA, Canada, Switzerland, and Israel have implemented various educational programs. These researches could be utilized as basic materials for drawing up plans for civil defense, emergency services and worldwide countermeasures against CBRNE.

  • PDF

Research on the support system and reinforcement range of cross passage tunnel (피난연결통로터널의 지보패턴 및 보강범위 연구)

  • Jung, Min;Han, Ki-Hwan;Park, Jin-Won;Baek, Kyung-Min;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2010
  • Recently, plans of tunnel and construction have increased. Unfortunately, the more we have tunnels, the more we have accidents in there. Because an accident or a fire in the tunnel is fatal to user safety, social concerns are focusing on the disaster prevention facilities. Cross passage tunnel is regarded as one of the useful disaster prevention facilities, which is increasing, while there were only few studies about the support system. This study tried to verify whether the support system is appropriate or not with empirical methods-theoretical methods and back analysis using measurement data. Additionally, we also looked into the range of reinforcement in accordance with strength/stress ratio of rock mass.

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

A Brief History and National Safety Regulation on the Weapons of Mass Destruction Including Biological Agents (생물작용제를 포함한 대량살상용 생물학적 무기에 대한 역사 및 법률적 안전규제 사항에 관한 고찰)

  • Kim, Jee-Hee;Lee, Si-Young
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.102-109
    • /
    • 2007
  • A bioterrorism attack is the deliberate release of viruses, bacteria, or other germs(agents) used to cause illness or death in people, animals, or plant. These agents are found in nature, but it is possible that they could be changed to increase their ability to cause disease, make them resistant to current medicines, or to increase their ability to be spread into the environment. Terrorists may use biological agents because these agents can be extremely difficult to detect and do not cause illness for several days. Some bioterrorism agents, like smallpox virus, can spread from person to person, like anthrax, can not. From these agents, we discussed the characteristics of biological agents and national safety regulation on the weapons of mass destruction including bioterrorism.

Improvement of funeral home services in preparation for national disasters (국가재난대비 지정 장례식장 서비스의 개선 방안)

  • JeungSun Lee
    • Journal of Service Research and Studies
    • /
    • v.12 no.4
    • /
    • pp.72-81
    • /
    • 2022
  • As new disasters such as COVID-19, MERS, and earthquakes appear in modern society, the nation's ability to manage uncertain risks is becoming more important. The government is promoting a disaster safety management policy closely related to daily life by reinforcing on-site response capabilities. Therefore, in order to respond more effectively to disasters that have recently been enlarged, complicated, and delocalized, there is a limit to only disaster-related organizations in the public sector. It is necessary to check it and find ways to develop it. In the event of an unpredictable national disaster or infection, the government needs disaster safety management measures closely related to daily life. Accordingly, as an efficient response and strategy such as procedures and methods for funeral support at the scene of a national disaster were needed, a designated funeral home was introduced. In the event of a major disaster, a large number of casualties that exceed the daily work level of the relevant department occur and rapid changes in relief, medical care, funeral and administrative procedures occur accordingly. The purpose of this study is to derive basic operating directions and prompt funeral support plans for funeral homes designated for national disaster preparedness.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

Displacement Response Analysis According to TMD Mass Change of Dome-Shaped Large Spatial Structures (돔 형상 대공간 구조물의 TMD 질량 변화에 따른 변위응답분석)

  • Lee, A-Rom;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.95-104
    • /
    • 2021
  • As people's living standards and cultural standards have developed, interest in culture and art has increased, and the demand for large space structures where people can enjoy art, music, and sports has increased. As it accommodates a large number of personnel, it is most important to ensure safety of large spatial structures, and can be used as a space where people can evacuate in case of a disaster. Large spatial structures should be prepared for earthquake loads rather than wind loads. In addition to damage to the structure due to earthquakes, there are cases in which it was not utilized as a space for evacuation due to the fall of objects installed on top of the structure. Therefore, in this study, the dome-shaped large spatial structure is generalized and the displacement response according to the number of installations, position and mass is analyzed using a tuned mass damper(TMD) that is representative vibration control device.

EMR: An effective method for monitoring and warning of rock burst hazard

  • Song, Dazhao;Wang, Enyuan;Li, Zhonghui;Qiu, Liming;Xu, Zhaoyong
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.53-69
    • /
    • 2017
  • Rock burst may cause serious casualties and property losses, and how to conduct effective monitoring and warning is the key to avoid this disaster. In this paper, we reviewed both the rock burst mechanism and the principle of using electromagnetic radiation (EMR) from coal rock to monitor and forewarn rock burst, and systematically studied EMR monitored data of 4 rock bursts of Qianqiu Coal Mine, Yima Coal Group, Co. Ltd. Results show that (1) Before rock burst occurrence, there is a breeding process for stress accumulation and energy concentration inside the coal rock mass subject to external stresses, which causes it to crack, emitting a large amount of EMR; when the EMR level reaches a certain intensity, which reveals that deformation and fracture inside the coal rock mass have become serious, rock burst may occur anytime and it's necessary to implement an early warning. (2) Monitored EMR indicators such as its intensity and pulses amount are well and positively correlated before rock bursts occurs, generally showing a rising trend for more than 5 continuous days either slowly or dramatically, and the disaster bursts generally occurs at the lower level within 48 h after reaching its peak intensity. (3) The rank of EMR signals sensitive to rock burst in a descending order is maximum EMR intensity > rate of change in EMR intensity > maximum amount of EMR pulses > rate of change in the amount of EMR pulses.

Proposing a DfMA Modular Housing Model for Disaster Relief Support (재난 지원을 위한 DfMA 모듈러주택 모델 제안)

  • Ji-Eun Lee
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.97-107
    • /
    • 2023
  • This study examined how to better provide quality temporary housing for people in the event of natural and social disasters. Design for Manufacture and Assembly (DfMA) is suitable for creating an efficient planning model for the mass production and transport of a modular house. The proposed DfMA model has the following three characteristics. First is the division of the modular house into service modules and functional modules and to create diversity by developing standard parts and multi-functional parts. Second is a flexible layout suitable for various site conditions. Such flexible layouts would allow identical homes to be mass produced and deployed to a variety of locations, both nationally and internationally. Third is to simplify and minimize the automation process with dry construction to increase production efficiency. Application of this DfMA design method can lead to reduced construction time and cost and improve housing quality.