• Title/Summary/Keyword: Masonry Infilled RC Frame

Search Result 35, Processing Time 0.021 seconds

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Analysis of behavior of bare and in-filled RC frames subjected to quasi static loading

  • Sandhu, Balvir;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.381-395
    • /
    • 2020
  • Study on the inelastic response of bare and masonry infilled Reinforced Concrete (RC) frames repaired using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi- static loading is presented in the work. The hysteresis behaviour, stiffness retention, energy dissipation and damage index are the parameters employed to analyze the efficacy of FRP strengthening of bare and brick in-filled RC frames. It is observed that there is a significant improvement in load carrying capacity of brick infilled frame over bare RC frame. Also FRP strengthened brick infilled frame performs much better than FRP repaired bare frame under quasi static loading. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame (조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구)

  • Yu, EunJong;Kim, MinJae;Jung, DaeGye
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach

  • De Domenico, Dario;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.423-442
    • /
    • 2018
  • In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

Seismic response of RC frame structures strengthened by reinforced masonry infill panels

  • Massumi, Ali;Mahboubi, Behnam;Ameri, Mohammad Reza
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1435-1452
    • /
    • 2015
  • The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. Experimental observations regarding the influence of infill panels on increasing stiffness and strength of reinforced concrete structures reveal that such panels can be used in order to strengthen reinforced concrete frames. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. In order to determine the acceptance criteria and modeling parameters for frames as well as reinforced masonry panels, the Iranian Guideline for Seismic Rehabilitation of Existing Masonry Buildings (Issue No. 376), the Iranian Guideline for Seismic Rehabilitation of Existing Structures (Issue No. 360) and FEMA Guidelines (FEMA 273 and 356) were used. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.