• Title/Summary/Keyword: Masonry

Search Result 613, Processing Time 0.025 seconds

A Modern Interpretation of the Resources Required for the Construction of Paldal-mun in the Joseon Dynasty through the Analysis of HwaSungSungYouk-EuGye (화성성역의궤 분석을 통한 조선시대 팔달문 건설 소요자원의 현대적 해석)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.641-652
    • /
    • 2021
  • Although detailed information on the construction of Hwasung was recorded in the Hwasungsungyouk-eugye, analysis and evaluation from the perspective of modern construction management were limited. Therefore, in this study, construction management related information such as time, cost, and manpower was analyzed for Paldal-mun. The main work involved in the construction of Paldal-mun was foundation work and masonry work, and the total construction period was 6 months, with the overall construction progressing very quickly. The total cost of the construction of Paldal-mun was about 52,423 Nyong, which can be divided into about 15,9332 Nyang for materials and 36,4901 Nyang for labor cost. Converting these to present value, the material cost is about 1.1 billion won and the labor cost is about 2.5 billion won, and the sum of these is about 3.6 billion won. In the future, we plan to conduct additional research in this area such as deriving detailed input manpower related to the work period for each type of work.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.

Model Tests for the Damage Assessment of Adjacent Buildings in Urban Excavation (흙막이굴착에 따른 인접건물의 손상평가에 대한 모형실험연구)

  • Kim, Hak-Moon;Hwang, Eui-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.121-131
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to excavation in urban environment. Model tests were carried out for 2 story masonry building and frame structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. Therefore the most weak part (bay) of structure must be heavily instrumented and monitored in more details at early stage of constructions. The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.

Types and Distribution Characteristics of Old Buildings in Historic Urban Area of Cheongju, Korea - Focused on Seongan-dong and Jungang-dong - (역사적 도심 내 현존하는 옛 건축물의 유형 및 분포 특성 - 청주시 성안동과 중앙동을 대상으로 -)

  • Kim, Tai Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.59-66
    • /
    • 2022
  • This study is to investigate the old buildings that have been built more than 50 years ago, targeting the areas of Seongan and Jungang-dong, the historic urban area of Cheongju. Their types and distribution characteristics are as follows. 1) First, the old buildings existing in downtown Cheongju account for 21.4% of 1,070 out of the total 5,000 buildings. Among them, wooden buildings before the 1950s accounted for 60% of them, resulting in severe aging. 2) Second, by use, 728 detached houses and 276 neighborhood living facilities account for 93.8% of the total, with 16 offices and 12 religious facilities. By structure, there are wood 65%, masonry 30%, and reinforced concrete 5% (54 buildings). By number of floors, the first floor 90%, the second floor 7.3%, and the third floor or higher 2.7% (30 buildings). The roof material is 51.6% of earthenware, followed by slate, cement, and slab. 3) Third, the old buildings are scattered all over the streets, and are concentrated in Namju-dong, Nammun-ro 1-ga-dong, Seoun-dong, and Sudong at the foot of Uamsan Mountain, a former refugee village. Also old buildings are distributed in Seoun-dong and Seokgyo-dong where hanok(korean traditional houses) are concentrated, in Namju and Nammunro 1 ga-dong blocks connected by alleys, and in cul-de-sac all over the place.

Empirical seismic vulnerability probability prediction model of RC structures considering historical field observation

  • Si-Qi Li;Hong-Bo Liu;Ke Du;Jia-Cheng Han;Yi-Ru Li;Li-Hui Yin
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.547-571
    • /
    • 2023
  • To deeply probe the actual earthquake level and fragility of typical reinforced concrete (RC) structures under multiple intensity grades, considering diachronic measurement building stock samples and actual observations of representative catastrophic earth shocks in China from 1990 to 2010, RC structures were divided into traditional RC structures (TRCs) and bottom reinforced concrete frame seismic wall masonry (BFM) structures, and the empirical damage characteristics and mechanisms were analysed. A great deal of statistics and induction were developed on the historical experience investigation data of 59 typical catastrophic earthquakes in 9 provinces of China. The database and fragility matrix prediction model were established with TRCs of 4,122.5284×104 m2 and 5,844 buildings and BFMs of 5,872 buildings as empirical seismic damage samples. By employing the methods of structural damage probability and statistics, nonlinear prediction of seismic vulnerability, and numerical and applied functional analysis, the comparison matrix of actual fragility probability prediction of TRC and BFM in multiple intensity regions under the latest version of China's macrointensity standard was established. A novel nonlinear regression prediction model of seismic vulnerability was proposed, and prediction models considering the seismic damage ratio and transcendental probability parameters were constructed. The time-varying vulnerability comparative model of the sample database was developed according to the different periods of multiple earthquakes. The new calculation method of the average fragility prediction index (AFPI) matrix parameter model has been proposed to predict the seismic fragility of an areal RC structure.

Assessment of Apartment Building Construction Workers' Noise Exposure (아파트 건설노동자 소음 노출평가)

  • Taesun Kang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.308-316
    • /
    • 2023
  • Objectives: The aim of this study is to measure and assess the occupational noise exposure levels among construction workers at apartment building construction sites in South Korea. Methods: Noise exposure assessments were conducted for 139 construction workers across 10 different trades at 53 apartment building construction sites in the northern part of Gyeonggi-do. Assessments were carried out using a noise dosimeter set with a 90 dB criterion, an 80 dB threshold, and a 5 dB exchange rate over a period of more than 6 hours(LMOEL) Results: The mean LMOEL (equivalent continuous noise level over 8 hours) for the 139 dosimeter samples was 87.8 ± 4.3 dBA. The mean noise exposure level for each construction trade, referred to as the trade mean, was also calculated. Significant differences in noise exposure levels were observed between construction trades (ANOVA, p < 0.001). The highest LMOEL values were recorded for concrete chippers (93.2 ± 2.6 dBA), followed by ironworkers (88.4 ± 0.7 dBA), concrete finishers (88.3 ± 2.7 dBA), masonry workers (87.7 ± 1.9 dBA), pile driver operators (85.6 ± 1.7 dBA), concrete carpenters (84.9 ± 2.4 dBA), interior carpenters (83.5 ± 2.1 dBA), and other groups (81.4 ± 2.2 dBA). Conclusions: The findings suggest that nearly all construction workers in this study are at risk of Noise-Induced Hearing Loss (NIHL). Moreover, the study establishes that construction trades can serve as a useful metric for assessing noise exposure levels at apartment construction sites.

Evaluation of Structural Performance of Unhangak in Suwon Hwaryeongjeon by Three-Dimensional Structural Analysis (3차원 구조해석에 의한 수원 화령전 운한각의 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.197-204
    • /
    • 2024
  • In this paper, the structural performance of Suwon Hwaryeongjeon Unhangak, a representative traditional timber structure in the late Joseon Dynasty, was evaluated. Based on the structure composition of Unhangak, an analysis model was elaborately constructed with Midas Gen, a 3-dimensional structural analysis software. The safety and serviceability of major structural members were evaluated by static analysis, and the dynamic behavior characteristics were evaluated by eigenvalue analysis. Most of the members satisfied the safety and serviceability standards with a margin; however, the bending stress ratio in the oemogdori exceeds the standard by 20.7%, so it is considered that long-term monitoring is needed for this member. The natural period of Unhangak is 1.079 seconds, which is slightly longer than traditional timber buildings of similar scale. In particular, it is analyzed that torsional movement occurred in the secondary mode due to the influence of the rear masonry firewall.

Geophysical Exploration of Songsalli Ancient Tombs and Analysis of King Muryeong's Tomb Structure, Gongju (공주 송산리 고분군(公州 宋山里 古墳群)에서의 물리탐사와 무령왕릉(武寧王陵)의 구조분석)

  • Oh, Hyun-dok
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.4
    • /
    • pp.4-23
    • /
    • 2013
  • Songsalli Ancient Tombs of Gongju consists of seven tombs. King Muryeong's tomb, the seventh tomb, is a brick chamber tomb discovered during the drainage works for the fifth and the sixth tombs in 1971. The excavation at the time focused on topographic surveys of the tomb entrance and the inside of the burial chamber as well as collection of the remains. The burial mount survey confirmed the status of some stone slab remaining and lime-mixed soil layers, but the survey did not examine the exterior structure of the whole tomb as the mounds were removed even more deeply. The excavation revealed damages to the bricks and mural damages due to moisture and fungus in the sixth and the seventh tombs. Between 1996 and 1997, Gongju National University conducted a comprehensive detailed survey of Songsalli Ancient Tombs including a geophysical survey, with an aim to identify the root causes of such degradation. Based on the results, repair took place in 1999 and the fifth, sixth and seventh tombs were placed under permanent conservation to conserve the cultural assets. General public is currently denied access. The purpose of this study was to conduct a three-dimensional resistivity and GPR surveys on the ground surface of the fifth, sixth and seventh tombs of Songsalli Ancient Tombs in order to understand the underground status after repair. The study also aimed to understand the thickness of all the tomb walls and exterior structure based on GPR inside King Muryeong's tomb. The exploration on the ground surface found that the three tombs and soil adjacent to the tombs had resistivity as low as 5 to $90{\Omega}m$, which confirmed that the soil water content was still as high as that prior to the repair work. Additionally, GPR found that the wall construction of the burial chamber of King Muryeong's tomb was approximately 70cm in thickness, while the structure was of 2B with two bricks, about 35cm in length, put together longitudinally(2B brick masonry). The pathway to the burial chamber was of the 2B structure just like that of the burial chamber walls, while its thickness was 80cm with an eyebrow-type arch connected to it. Also, the ceiling exterior appears to have an arch structure, identical to the shape inside.

A Study on the Structure Behavior of Dry-assembled Wall with Concrete Blocks subjected to Cyclic Lateral Load (콘크리트블록으로 건식조립된 벽체의 수평반복하중에 대한 구조거동 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.440-447
    • /
    • 2020
  • Masonry structures are used as bearing walls in small buildings, but they are generally considered non-bearing walls. They are used as partition walls that divide the interior spaces of the frame structures of buildings. In addition, wetting techniques that use mortar as an adhesive between blocks or bricks in construction are vulnerable to climatic conditions, especially cracks in mortar, which can cause conduction collapse of the walls in seismic loading. The purpose of this research was to propose a dry concrete block construction method that complements the weak axial shear stiffness and improves the weakness of the wet construction method as well as to investigate its structural behavior. In this study, the material properties of concrete blocks were examined, and the seismic performance of the proposed dry assembly structure was verified by structural behavior tests on horizontal cyclic loads. First, in these study results, concrete blocks can be applied to the dry block construction method instead of wet construction methods because they secure more than C-type blocks in KS regulations. Second, the structural performance of the wall against a horizontal cyclic load indicates that the resisting force of the assembly block wall is increased by increasing the horizontal length of the wall, forming several diagonal cracks. Finally, the proposed dry block wall structure requires a seismic performance assessment considering that the ratio of the shape of the wall by height and length is considered a major influence variable on the structural behavior under a horizontal load.

Research on Characteristics of Vegetation Subsequent to Crossing Structure of the Urban Streams - Centering on the Cases of Dorimcheon, Banghakcheon, Seongnaecheon and Yangjaecheon in Seoul - (도시하천의 횡단구조에 따른 식생분포특성 연구 -서울시 도림천, 방학천, 성내천, 양재천을 사례로-)

  • Bae, Jung-Hee;Lee, Kyong-Jae;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.268-279
    • /
    • 2008
  • This study is aimed at typifying the crossing structure and inquiring into the characteristics of vegetation distribution by type targeting Dorimcheon(stream), Banghakcheon(stream), Seongnaecheon(stream) and some sections of Yangjaecheon(stream) in Seoul through the establishment of basic data for restoring vegetation in urban stream. This research classified the crossing structure into 56 slope types and 31 vertical types in combination with the three items, such as bank slope(vertical style, slope style) of bank, absence or presence of waterside, and revetment structure. This research derived nine slope types including SB1 (revetment of low water level-revetment with vegetation, and revetment of high water level-nature riverside) including SG5(revetment of low water-concrete, and revetment of high water level-riprap work), and three vertical types, such as VH4(bank revetment-wet masonry), and VH7(bank revetment - concrete )from the target survey areas. Among these, both revetment of low water level and high water level were found to be distributed on the longest section as the type of SG7 and VG7 structured in concrete. As a result of inquiry and analysis of micro topography structure and vegetation structure of eight major types, this research could find out the influence of crossing structure on plant vegetation according to the characteristic by typified item, but there appeared no distinct characteristic of vegetation distribution by crossing structure.