• Title/Summary/Keyword: Martensitic steel

검색결과 185건 처리시간 0.021초

13Cr마르텐사이트계 스테인리스강의 기계적성질에 미치는 Mo첨가의 영향 (Influence of Mo addition on the Mechanical Properties of 13Cr Martensitic Stainless Steel)

  • 김기엽;정병호;김무길;박찬;안용식
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.207-215
    • /
    • 1998
  • 13%Cr martensitic stainless steel was microalloyed with 0~1.5%Mo, and the mechanical properties were tested at the various heat treated conditions. Mo addition increased austenitization temperature(Ac1), and had little influence on the hardness and tensile properties at the annealed condition. The higher the austenitizing temperature, the higher the hardness and tensile strength, but Mo addition decreased those properties. The impact energy after austenitization increased with addition of Mo. The decrease of mechanical properties and increase of impact energy of Mo-alloyed steel after austenitization are thought to be caused by formation of ductile ${\delta}$-ferrite phase in the microstructure.

  • PDF

연주 ROLL 육성부의 기계적 성질에 미치는 Nb, V의 영향 (Effects of Nb, V on the Mechanical Properties of Continuous Casting Rolls Overlaidhang)

  • 김창규;윤재홍;황동수
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.70-76
    • /
    • 2004
  • In the steel marking industry, most companies have adapted the continuous casting process, due to its economical benefit. Casting rolls are utilized for frictional drive and the transport of solidifying slap. Dimensional tolerances, mechanical stability, and surface condition of the casting rolls can affect both the surface and the internal quality of the product being cast. To overcome these problems, the industry now is focused on accelerating the rate of technological improvements. This study has been undertaken for the development of casting rolls overlaid materials (SAW FCW wire), with the addition of Vanadium and Molybdenum to the martensitic stainless steel, in order to increase tensile strength and hardness at elevated temperatures.

STS 431 마르텐사이트계 스테인리스강의 고온 가스 질화 열처리에 따른 상변화 (Phase Changes of the STS 431 Martensitic Stainless Steel after High Temperature Gas Nitriding Treatment)

  • 유대경;공정현;이해우;강창룡;김영희;성장현
    • 열처리공학회지
    • /
    • 제21권5호
    • /
    • pp.244-250
    • /
    • 2008
  • This study has investigated the surface phase change, hardness variation, surface precipitates, nitrogen content and corrosion resistance in STS 431 (17Cr-2Ni-0.2C-0.01Nb) martensitic stainless steel after high temperature gas nitriding (HTGN) treatment at the temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The HTGN-treated surface layer appeared $Cr_2N$ of rod type, carbo-nitride of round type and fine precipitates in the austenite matrix. On the other hand the interior region where the nitrogen was not permeated, exhibited martensite phase. The surface hardness showed 250~590 HV, depending on the HTGN treatment conditions, while the interior martensitic phase represented 520 HV. The permeation depth of nitrogen increased with increasing the HTGN-treated temperature. The nitrogen concentration of the surface layer appeared approximately ~0.17% at $1100^{\circ}C$. On comparing the corrosion resistance between solution-annealed and HTGN-treated steels, the corrosion resistance of HTGN-treated steel was superior to that of solution-annealed specimens.

발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성 (Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants)

  • 방국수;박찬;이주영;이경운
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.

마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구 (A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr))

  • 윤병주
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

페라이트-마르텐사이트 복합 조직강의 피로한도에 미치는 마르텐사이트 조직형태의 영향 (Effects of the Type of Martensite on Fatigue Limit of Ferrite-Martensitic Steel)

  • 김민건;지정근
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.87-94
    • /
    • 2000
  • A study has been made on the behavior of microscopic fatigue crack growth at the stress level of the fatigue limit with ferrite-martensitic structures. For the above purpose, two types of the microstructures were prepared ; one is the microstructure having the ferrite encapsulating the islands of second phase martensite(FEM), the other is the microstructure with the martensite encapsulating the islands of ferrite(MEF). It has been pointed out that the fatigue limits of these microstructures are related to the critical stress at which the microcrack in the ferrite proceeds to the martensite. The high fatigue limit might be excepted for the MEF microstructure in which the critical crack length would be restricted within the second phase spacing in contrast with the FEM microstruture. However, the fatigue tests shows that no appreciable difference of the fatigue limits among them were recognized. Also, it turned out from the metallographic observations that the micro crack path is very much affected by the microstructures, so that the microcracks grow according to the 3-dimentional situation of its microstructures.

  • PDF

원심주조한 마르텐사이트 스테인레스강의 기계적 성질에 미치는 템퍼링 영향 (Effect of Tempering on the Mechanical Properties of Martensitic Stainless Steels Fabricated by Centrifugal Casting)

  • 배은재;백응률;안종헌
    • 한국주조공학회지
    • /
    • 제28권3호
    • /
    • pp.113-118
    • /
    • 2008
  • A new approach of producing martensitic structure for guide-roll materials was developed using centrifugal casting instead of classic overlay welding process. Centrifugal casting offered a simpler process, fewer defects and even microstructures. Especially in terms of thermal fatigue cracking which usually occurs in the HAZ of welding beads of used continuous caster guide roll materials made by overlay welding process. A typical tensile strength of 1,600 MPa was obtained by this process and was higher than typical tensile strength($800{\sim}1,200\;MPa$) with overlay welding technique. Tempering at $400{\sim}550^{\circ}C$ for 2 hrs was observed to have significant precipitate hardening effect which increases strength and elongation. Nitrogen content from the Cr-N input in the casting process was found to have positive contribution to decrease the volume fraction of ${\delta}$-ferrite which directly corresponds to increasing strength of the roll materials.

고탄소 연구강의 잠입귀열 방지에 관한 연구 (Study on Prevention of Quench Crack in Martensitic High Carbon Tool Steel)

  • 김학신;방성한;최종술;영형영
    • 한국표면공학회지
    • /
    • 제14권3호
    • /
    • pp.142-150
    • /
    • 1981
  • The present paper clarified mechanism of quench crack formation in high carbon steel dur-ing quenching, and, in order to prevent the quench crack, proposed two basic guides in alloy design of high carbon tool steel. They are to raise Ms temperature of high carbon tool steel by addition of alloying elemen-ts such as Al and Co, and to decrease grain size of the carbon tool steel by addition of alloying elements of Al, B, Ti, Zr, and V, and by grain-refining heat treatment.

  • PDF

Mod. 440A 마르텐사이트 스테인리스강의 미세조직과 기계적 성질에 미치는 오스테나이트화 처리의 영향 (Effect of Solution Annealing on the Microstructure and Mechanical Properties of Modified 440A Martensitic Stainless Steel)

  • 김영철;권순두;정병호;강창룡
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.103-108
    • /
    • 2013
  • This study was investigated the effect of austenitizing treatment the microstructure and mechanical properties in modified 440A steel, and the results were as follows. The amount of remaining carbide decreases with increasing the austenitizing treatment temperature, and all carbide is completely dissolved at $1250^{\circ}C$. The amount of remaining carbide decreases with increasing the austenitizing treatment time, but the carbide remains insoluble up to 120 minutes at $1050^{\circ}C$. The strength and hardness gradually decrease with increasing the austenitizing treatment temperature and is significantly lower at $1250^{\circ}C$, while the elongation and the impact value rapidly increase. The strength and hardness rapidly decrease, the elongation and impact value rapidly insrease with increasing the austenitizing treatment time and exhibit no change at above 120 minutes. The austenitizing treatment modified 440A steel is required for temperature of above $1050^{\circ}C$ and time of above 60 minutes.