• Title/Summary/Keyword: Marshall mix design

Search Result 31, Processing Time 0.025 seconds

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF

Mix Design for Waste PE Films Modified Asphalt Concrete (농업용 폐비닐로 개질한 아스팔트 콘크리트의 배합설계)

  • 김광우;이상범;오성균;고동혁;정승호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.313-318
    • /
    • 1999
  • This study is basic research to improve quality of asphalt concrete mixture, to preserve environment, and to recycle waste vinly. The mixing method and proper content of waste vinyl were determined through preliminary mix design. This study performed mix designs using 2 type gradations of aggregate in addtion content of wate vinly. Marshall stability at optimum asphalt content of asphalt concrete mixture addtin wate vinly was satisfied with the specification of the Ministry of Construction and Transportation , and its values indicated that dense grade asphalt concrete mixture containing waste vinyl were higher than common dense grade mixture (control). From this study, it was confirmed that addtion of waste vinyl improved quality of asphalt concrete mixture.

  • PDF

Study of the Curing Time of Cementless Cold Central Plant Recycled Asphalt Base-Layer through Field-Application Review (무시멘트 상온 재활용 아스팔트 기층의 현장 적용성을 통한 양생기간에 관한 연구)

  • Choi, Jun Seong;Jung, Chul Ho;Lee, Chan Hee;Lim, in su
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : The objective of this study is to ascertain the curing period of cementless cold central plant recycled asphalt base-layer, using mechanical analyses and specimen quality tests on the field. METHODS : Cold central plant recycled asphalt base-layer mixture was produced in the plant from reclaimed asphalt, natural aggregate, filler for the cold mix, and the modified emulsion AP using asphalt mix design and plant mix design. In order to examine the applicability of the curing period during the field test, the international standards for the possibility of core extraction and the degree of compaction and LFWD deflection were analyzed. Moreover, Marshall stability test, porosity test, and indirect tensile strength test were performed on the specimens of asphalt mix and plant mix design. RESULTS : The plant production process and compaction method of cementless cold central plant recycled asphalt base-layer were established, and the applicability of the optical moisture content for producing the mixture was verified through the field test. In addition, it was determined that the core extraction method of the conventional international curing standard was insufficient to ensure performance, and the LFWD test demonstrated that the deflection converges after a two-day curing. However, the back-calculation analysis reveals that a three-day curing is satisfactory, resulting in a general level of performance of dense asphalt base-layer. Moreover, from the result of the specimen quality test of the asphalt mix design and plant mix design according to the curing period, it was determined that the qualities satisfied both domestic and international standards, after a two-day curing. However, it was determined that the strength and stiffness after three-day curing are higher than those after a two-day curing by approximately 3.5 % and 20 %, respectively. CONCLUSIONS:A three-day curing period is proposed for the cementless cold central plant recycled asphalt base-layer; this curing period can be demonstrated to retain the modulus of asphalt-base layer in the field and ensure stable quality characteristics.

Evaluation of Rutting Performance of Hot Mix Asphalt with Compaction Curve of Gyratory Compactor (선회다짐기 다짐곡선을 이용한 아스팔트 혼합물의 소성변형 특성 평가)

  • Park, Tae-Seong;Lee, Byung-Sik;Hyun, Seong-Cheol;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • For the time being, HMA test specimen were prepared by Marshall Compaction Method for hot mix asphalt design and evaluated the mechanical properties of HMA at the specified air voids. Gyratory Compaction can simulate the field compaction process and measure the degree of compaction just after field compaction in laboratory. Superpave mix design with Gyratory compactor has been used for characterization of performance. The curve of gyratory compaction can be used to evaluate the permanent deformation potential of hot mix asphalt. In this paper, couple of indices for hot mix asphalt have been showed for hot mix asphalt in Korea. The major properties from gyratory compaction curve are compaction energy index and traffic compaction index. The specific guide line for the potential of hot mix asphalt has been proposed.

Mechanical Characteristics of Asphalt Stabilized Soil (아스팔트 안정처리토의 역학적 특성 연구)

  • 박태순;최필호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.189-197
    • /
    • 2003
  • The treatment and hauling of surplus soils which occur from construction activity are costly and have been demanding a reasonable recycling method. This study presents laboratory test results regarding the mechanistic properties of asphalt stabilized soils. The foamed asphalt equipment which generates the asphalt bubble was used to mix the soil. The marshall stability, indirect tensile test, resilient modulus, creep test and triaxial test(UU) were conducted to find out the performance of the asphalt stabilized soil. The test results were compared with the samples that fabricated in different conditions(the samples without asphalt and the reinforced samples using 2% cement). The inclusion of the asphalt in the soil has improved the marshall stability, resilient modulus and moisture susceptibility, and the addition of the 2% cement has even more increased these properties. The amount of the fines and the optimum moisture contents for mixing affects the mechanistic properties and important parameters for mix design.

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Effect of Moisture and Freeze-Thaw on Mechanical Properties of CRM Asphalt Mexture (폐타이어 재활용 아스팔트 혼합물의 기계적 성질에 대한 습윤과 동결 융해의 영향)

  • 김낙석;조기주
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw.

  • PDF

Experimental Study for Determination of Optimum Waste Vinyl Contents in Asphalt Concrete (아스팔트 콘크리트에 적정 폐비닐 첨가량 결정에 관한 실험적 연구)

  • 김광우;김주인;이순제;최선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.88-95
    • /
    • 2002
  • This study is a fundamental research for recycling waste vinyl (WV) in asphalt mixture for improving roadway pavement. Mix design was conducted by WV content and optimum asphalt content (OAC) was determined for dense-graded surface course mixture. Marshall stability test, indirect tensile strength (ITS) test and wheel tracking test were carried out to measure the characteristics of WV-added asphalt concretes. From the results of this study, recycling WV in asphalt mixture is possible. However, as WV content increased, melted WV clustering appeared in asphalt mixture. It could be considered that adding too much WV in asphalt mixture is not proper. The proper content of LDPE and HDPE WV was appeared to be 12% and 8%, respectively.