• Title/Summary/Keyword: Markowitz model

Search Result 31, Processing Time 0.014 seconds

Black-Litterman Portfolio with K-shape Clustering (K-shape 군집화 기반 블랙-리터만 포트폴리오 구성)

  • Yeji Kim;Poongjin Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.63-73
    • /
    • 2023
  • This study explores modern portfolio theory by integrating the Black-Litterman portfolio with time-series clustering, specificially emphasizing K-shape clustering methodology. K-shape clustering enables grouping time-series data effectively, enhancing the ability to plan and manage investments in stock markets when combined with the Black-Litterman portfolio. Based on the patterns of stock markets, the objective is to understand the relationship between past market data and planning future investment strategies through backtesting. Additionally, by examining diverse learning and investment periods, it is identified optimal strategies to boost portfolio returns while efficiently managing associated risks. For comparative analysis, traditional Markowitz portfolio is also assessed in conjunction with clustering techniques utilizing K-Means and K-Means with Dynamic Time Warping. It is suggested that the combination of K-shape and the Black-Litterman model significantly enhances portfolio optimization in the stock market, providing valuable insights for making stable portfolio investment decisions. The achieved sharpe ratio of 0.722 indicates a significantly higher performance when compared to other benchmarks, underlining the effectiveness of the K-shape and Black-Litterman integration in portfolio optimization.