In this paper we consider a Markovian perfect debugging model for which the software failure is caused by two types of faults, one which is easily detected and the other which is difficult to detect. When a failure occurs, a perfect debugging is immediately performed and consequently one fault is reduced from fault contents. We also treat the debugging time as a variable to develop a new debugging model. Several measures, including the distribution of first passage time to the specified number of removed faults, are also obtained using the proposed debugging model, Numerical examples are provided for illustrative purposes.
The concept of revenue management have been used widely In the hotel and all transportation industries, and considered as a good system for managing a perishable asset. Recently, its' application area is being increasingly expanded to service industries such as the travel, the railway, the Internet and the sport industries. Internet business can be classified into several groups according to the characteristics of the individual business. One of groups is Internet Access Servoce business which connects each users to the internet. In this paper, since internet Access Services (IAS) business has a similar property to the service Industry, we will apply a revenue management concept to It. With some modification of existing model developed by Subramanian et.al. for airlines, we suggest the revenue management model being applied to IAS business. Computational experiment shows that the Increase of the revenue Is up to 7% by appluing our model. It means our model has a potential to manage IAS business effectively.
Journal of the Korean Data and Information Science Society
/
제10권1호
/
pp.119-133
/
1999
마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.
Software reliability growth models are used in testing stages of software development to model the error content and time intervals betwewn software failures. In this paper, using priors for the number of fault with the negative binomial distribution nd the error rate with gamma distribution, Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability. For model selection, we explored the sum of the relative error, Braun statistic and median variation. In Bayesian computation process, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carolo method to compute the posterior distribution. Using simulated data, Bayesian inference and model selection is studied.
Journal of the Korean Data and Information Science Society
/
제18권2호
/
pp.553-560
/
2007
In this paper, we consider two components system which lifetimes have Freund's bivariate exponential model with equal failure rates. We propose Bayesian multiple comparisons procedure for the failure rates of I Freund's bivariate exponential populations based on Dirichlet process priors(DPP). The family of DPP is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo(MCMC) method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of multiple comparisons problem for the failure rates of bivariate exponential populations is illustrated through a numerical example.
The impact on streamflow and groundwater recharge considering future potential climate and land use change was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for a $260.4km^2$ which has been continuously urbanized during the past couple of decades. The model was calibrated and validated with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.8 to 0.7 and 0.7 to 0.5, respectively. The CCCma CGCM2 data by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2) of the IPCC (Intergovemmental Panel on Climate Change) were adopted and the future weather data was downscaled by Delta Change Method using 30 years (1977 - 2006, baseline period) weather data. The future land uses were predicted by CA (Cellular Automata)-Markov technique using the time series land use data of Landsat images. The future land uses showed that the forest and paddy area decreased 10.8 % and 6.2 % respectively while the urban area increased 14.2 %. For the future vegetation cover information, a linear regression between monthly NDVI (Normalized Difference Vegetation Index) from NOAA/AVHRR images and monthly mean temperature using five years (1998 - 2002) data was derived for each land use class. The future highest NDVI value was 0.61 while the current highest NDVI value was 0.52. The model results showed that the future predicted runoff ratio ranged from 46 % to 48 % while the present runoff ratio was 59 %. On the other hand, the impact on runoff ratio by land use change showed about 3 % increase comparing with the present land use condition. The streamflow and groundwater recharge was big decrease in the future.
Equipment replacement policy may not be defined with certainty, because physical states of any technological system may not be determined with foresight. This paper presents Markov Decision Process(MDP) model for army equipment which is subject to the uncertainty of deterioration and ultimately to failure. The components of the MDP model is defined as follows: ⅰ) state is identified as the age of the equipment, ⅱ) actions are classified as 'keep' and 'replace', ⅲ) cost is defined as the expected cost per unit time associated with 'keep' and 'replace' actions, ⅳ) transition probability is derived from Weibull distribution. Using the MDP model, we can determine the optimal replacement policy for an army equipment replacement problem.
군은 신뢰도(Reliability)나 가용도(Availability)가 다른 어떤 조직보다 중요한 조진이다. 최근에는 시스템 준비태세(System Readiness)를 강조하며, 무기체계의 성능뿐 아니라 가용도를 중요한 성과 목표로 정의하고 있어 이런 경향은 심화되고 있다. 이런 맥락에서, 군의 중요한 설비나 장비들은 신뢰도(Reliability)와 가용도(Availability) 제고를 위해 만약의 경우를 대비하는 여유 장비를 운용하고 있다. 이를 정비대충장비(M/F Maintenance Float, 이하 M/F) 라고 한다. 군의 정비대충장비는 매년 장비의 수량과 가동률을 적용하여 소요량을 산출하고 있으나, 기존의 방법은 고장특성과 정비부대의 정비능력에 대한 고려가 미흡하여, M/F 도입에 따른 효과인 신뢰도와 가용성 제고를 원래 의도된 목표만큼 달성하지 못하고 있다. 본 연구에서는 대기행렬이론과 흡수 마코프체인을 활용하여, M/F 재고 수준 결정을 위한 분석 모형을 제시하고, 그 결과를 활용하여 역습부대역할을 수행하는 OO부대에서 운용되고 있는 K-1 전차의 운영유지 대풍장비의 최적 수량을 산출했다. 본 연구는기존 연구에 비해 이해가 용이한 (Tractable) 방법론을 활용하면서도 M/F 수준과 관련된 의사결정을 정교하게 묘사할 수 있는 모형을 제시했다는 점에서 의의가 있다.
본 논문은 계층적 디리슐레 과정(HDP)과 은닉 마르코프 모형(HMM)이 결합된 베이스 통계학적 방법과 HMM의 상태 지속 정보를 이용한 건강 상태 예측 방법을 제안한다. HDP-HMM은 베이스 방법의 HMM 확장 모형으로서 건강의 동적 특성을 고려하여 불확실하고 가늠하기조차도 어려운 건강 상태의 수를 추정할 수 있게 해준다. 모의 데이터와 실제 건건 검진 데이터를 이용한 시험을 통하여 흥미 있는 행동 특성을 볼 수 있었으며 최대 5년까지로 제한한 미래 예측도 충분한 가능함을 확인하였다. 미래는 불확실하며 예측 문제는 본질적으로 어렵다. 그러나 본 연구의 실험 결과로 동적인 문맥 하에서 다중 후보 가설을 제시함으로서 실용 가능한 건강상태의 장기 예측이 가능하다는 것을 읽을 수 있었다.
본 논문에서는 반연속 HMM(semi-continuous Hidden Markov Model) 음성 인식 시스템에 적용되는 베이시안 화자 적응(Bayesian speaker adaptation)의 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존 베이시안 화자 적응 알고리즘의 경우 새로운 화자의 특징 분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준(reference) 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고, 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응 관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.