• 제목/요약/키워드: Marketing Analytics

검색결과 51건 처리시간 0.023초

마케팅 관점으로 본 빅 데이터 분석 사례연구 : 은행업을 중심으로 (Big Data Analytics Case Study from the Marketing Perspective : Emphasis on Banking Industry)

  • 박성수;이건창
    • 한국IT서비스학회지
    • /
    • 제17권2호
    • /
    • pp.207-218
    • /
    • 2018
  • Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.

캠페인 실행에 영향을 미치는 디지털 마케팅 성과모형 연구 (A Study on Digital Marketing Model for Improving Campaign Performance)

  • 이상호;김종배
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.205-211
    • /
    • 2012
  • 본 논문은 기업의 마케팅 캠페인 실행 성과를 향상시키기 위한 디지털 마케팅 모델에 대한 연구 결과를 제시하고 있다. 최근 ERP, CRM, SCM 등 비즈니스 가치 사슬 프로세스를 개선하기 위한 프로젝트를 마친 기업들은 마케팅 프로세스를 전사적으로 개선하기 위한 작업을 진행하고 있다. 기존 마케팅 기법의 한계를 극복하기 위해서 디지털 마케팅 기법을 활용하기 위한 시도가 많다. 특히 마케팅 프로세스의 실행 단계인 캠페인 수행성과를 향상시키기 위해 디지털 마케팅 기법들을 적용하고 있다. 이에 본 논문에서는 디지털 마케팅 연구 모델과 연구 가설을 수립하고, 마케팅 전문가 설문 조사를 통한 통계적 분석 방법을 통해 검증하고자 하였다. 연구를 통해서 디지털 마케팅 모델 중에서 웹 분석, 소셜 분석, 개인 맞춤형 고객 관계 분석, 캠페인 실행 자동화, 실시간 캠페인 관리 등의 기법이 기업의 마케팅 캠페인 실행 성과에 영향을 미치는 것을 실증적으로 검증하였다.

The Adoption of Big Data to Achieve Firm Performance of Global Logistic Companies in Thailand

  • KITCHAROEN, Krisana
    • 유통과학연구
    • /
    • 제21권1호
    • /
    • pp.53-63
    • /
    • 2023
  • Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.

Influence of Big Data Analytics Capability on Innovation and Performance in the Hotel Industry in Malaysia

  • Muhamad Luqman, KHALIL;Norzalita Abd, AZIZ
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제10권2호
    • /
    • pp.109-121
    • /
    • 2023
  • This study aims to address the literature gap by examining the direct relationship between big data analytics capability, marketing innovation, and organizational innovations. Additionally, this study would examine big data analytics capability as the antecedent for both innovation types and how these relationships influence firm performance. The research model is developed based on the integration of resource-based view and knowledge-based view theories. The quantitative method is used as the research methodology for this study. Based on a purposive sampling method, a total of 115 questionnaires were obtained from managers in star-rated hotels located in Malaysia. Partial least square structural equation modeling (PLS-SEM) is utilized for the data analysis. The result shows that big data analytics capability positively affects marketing and organizational innovations. The findings show that big data analytics capability and organizational innovation positively influence firm performance. Nonetheless, the result revealed that marketing innovation is not positively related to firm performance. The findings also indicate to hotel managers the importance of big data analytic capability and the resources required to build and develop this capability. The contributions from this study enrich the literature on big data and innovation, which is particularly limited in the hospitality and tourism context.

Relations between Reputation and Social Media Marketing Communication in Cryptocurrency Markets: Visual Analytics using Tableau

  • Park, Sejung;Park, Han Woo
    • International Journal of Contents
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Visual analytics is an emerging research field that combines the strength of electronic data processing and human intuition-based social background knowledge. This study demonstrates useful visual analytics with Tableau in conjunction with semantic network analysis using examples of sentiment flow and strategic communication strategies via Twitter in a blockchain domain. We comparatively investigated the sentiment flow over time and language usage patterns between companies with a good reputation and firms with a poor reputation. In addition, this study explored the relations between reputation and marketing communication strategies. We found that cryptocurrency firms more actively produced information when there was an increased public demand and increased transactions and when the coins' prices were high. Emotional language strategies on social media did not affect cryptocurrencies' reputations. The pattern in semantic representations of keywords was similar between companies with a good reputation and firms with a poor reputation. However, the reputable firms communicated on a wide range of topics and used more culturally focused strategies, and took more advantages of social media marketing by expanding their outreach to other social media networks. The visual big data analytics provides insights into business intelligence that helps informed policies.

Can We Identify Trip Purpose from a Clickstream Data?

  • Choe, Yeongbae
    • Journal of Smart Tourism
    • /
    • 제2권2호
    • /
    • pp.15-19
    • /
    • 2022
  • Destination marketing organizations (DMOs) utilize the official website for marketing and promotional purposes, while tourists often navigate through the official website to gather necessary information for their upcoming trips. With the advancement of business analytics, DMOs may need to exploit the clickstream data generated through their official website to develop more suitable and persuasive strategic marketing and promotional activities. As such, the primary objective of the current study is to show whether clickstream data can successfully identify the trip purposes of a particular user. Using a latent class analysis and multinomial logistic regression, this study found the meaningful and statistically significant variations in webpage visits among different trip purpose groups (e.g., weekend getaways, day-trippers, and other purposes). The findings of this study would provide a foundation for more data-centric destination marketing and management practice.

구글 애널리틱스를 활용한 대학 입시 홈페이지 웹로그 분석 (Weblog Analysis of University Admissions Website using Google Analytics)

  • 안수현;이상준
    • 실천공학교육논문지
    • /
    • 제16권1_spc호
    • /
    • pp.95-103
    • /
    • 2024
  • 학령인구의 급격한 감소로 입시 경쟁이 치열해지고 디지털 채널을 통한 마케팅이 더욱 중요해지면서 대학은 신입생 모집을 위해 온라인 홍보와 소통에 더 많은 리소스를 투자하고 있다. 이에 본 연구는 웹로그 분석도구인 구글 애널리틱스를 활용하여 대학 입시 홈페이지의 방문자 행동을 추적하고, 이를 기반으로 디지털 마케팅 전략을 수립하였다. 분석 대상 기간은 구글 애널리틱스4(GA4)가 통합된 2023년 7월 1일부터 대학 입시가 마무리된 2024년 1월 10일까지 설정하였다. 분석 결과 방문자의 접속 위치에 기반한 지리적 정보, 방문자가 사용한 기기(운영체제) 및 브라우저, 방문자들의 트래픽을 통한 유입 채널, 방문자가 참여한 페이지 및 화면의 전환, 방문자의 이동 흐름 등 흥미로운 패턴을 확인하였다. 본 연구를 바탕으로 대학은 디지털 마케팅을 통한 입시 홍보를 강화하고 입학 지원자들과 효과적인 소통을 통해 경쟁력을 확보할 수 있는 방안을 찾을 것으로 기대한다.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • 제4권2호
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.

The Impact of Business Intelligence on the Relationship Between Big Data Analytics and Financial Performance: An Empirical Study in Egypt

  • Mostafa Zaki, HUSSEIN;Samhi Abdelaty, DIFALLA;Hussein Abdelaal, SALEM
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제10권2호
    • /
    • pp.15-27
    • /
    • 2023
  • The purpose of this research is to investigate the impact of Business Intelligence (BI) on the relation between Big Data Analytics (BDA) and Financial Performance (FP), at the beginning we reviewed the academic accounting and finance literature to develop the theoretical framework of business intelligence, big data and financial performance in terms of definition, motivations and theories, then we conduct an empirical analysis based on questionnaire-base survey data collected. The researchers identified the study population in the joint-stock companies listed on the Egyptian Stock Exchange and operating in the sectors and activities related to modern technologies in information systems, big data analytics, and business intelligence, in addition to the auditing offices that review the financial reports of these companies, and The sector closest to the research objective is the communications, media, and information technology sector, where the survey list was distributed among the sample companies with (15) lists for each company, and (15) lists for each audit office, so that the total sample becomes (120) individuals (with a response rate 83.3%), The results show, First, Big data analytics significantly affect organizations' financial performance, second, Business intelligence mediates (partial) the relationship between big data analytics and financial performance.

Using Predictive Analytics to Profile Potential Adopters of Autonomous Vehicles

  • Lee, Eun-Ju;Zafarzon, Nordirov;Zhang, Jing
    • Asia Marketing Journal
    • /
    • 제20권2호
    • /
    • pp.65-83
    • /
    • 2018
  • Technological advances are bringing autonomous vehicles to the ever-evolving transportation system. Anticipating adoption of these technologies by users is essential to vehicle manufacturers for making more precise production and marketing strategies. The research investigates regulatory focus and consumer innovativeness with consumers' adoption of autonomous vehicles (AVs) and to consumers' subsequent willingness to pay for AVs. An online questionnaire was fielded to confirm predictions, and regression analysis was conducted to verify the model's validity. The results show that a promotion focus does not have a significantly positive effect on the automation level at which consumers will adopt AVs, but a prevention focus has a significantly positive effect on conditional AV adoption. Consumer innovativeness, consumers' novelty-seeking have a significantly positive relationship with high and full AV adoption, and consumers' independent decision-making has a significantly positive effect on full AV adoption. The higher the level of automation at which a consumer adopts AVs, the higher the willingness to pay for them. Finally, using a neural network and decision tree analyses, we show methods with which to describe three categories for potential adopters of AVs.