• 제목/요약/키워드: Market data classification

검색결과 227건 처리시간 0.037초

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

시계열 자료의 데이터마이닝을 위한 패턴분류 모델설계 및 성능비교 (Pattern Classification Model Design and Performance Comparison for Data Mining of Time Series Data)

  • 이수용;이경중
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.730-736
    • /
    • 2011
  • 본 연구는 순차적인 시계열 자료들에서 가장 최근의 추세가 반영될 수 있는 패턴분류 모델을 설계하였다. 의사결정을 지원하는 데이터마이닝 패턴분류 모델을 설계할 때 통계 기법과 인공지능 기법을 융합한 모델들이 기존의 모델보다 우수함을 입증하였다. 특히 퍼지이론과 융합된 패턴분류 모델들의 적중률이 상대적으로 더 향상되었다. 예를 들어, 통계적 이론을 기반으로 한 SVM모델과 퍼지소속함수와의 결합, 혹은 신경망과 FCM을 결합한 모델들의 성능이 우수하였다. 실험에서 사용한 패턴분류 모델들은 BPN, PNN, FNN, FCM, SVM, FSVM, Decision Tree, Time Series Analysis, Regression Analysis 등이다. 그리고 데이터베이스는 시계열 속성을 지닌 금융시장의 경제지표 DB(한국, KOSPI200 데이터베이스)와 병원 응급실의 부정맥환자에 대한 심전도 DB(미국 MIT-BIH 데이터베이스)들을 사용하였다.

머신러닝을 활용한 코스닥 관리종목지정 예측 (Predicting Administrative Issue Designation in KOSDAQ Market Using Machine Learning Techniques)

  • 채승일;이동주
    • 아태비즈니스연구
    • /
    • 제13권2호
    • /
    • pp.107-122
    • /
    • 2022
  • Purpose - This study aims to develop machine learning models to predict administrative issue designation in KOSDAQ Market using financial data. Design/methodology/approach - Employing four classification techniques including logistic regression, support vector machine, random forest, and gradient boosting to a matched sample of five hundred and thirty-six firms over an eight-year period, the authors develop prediction models and explore the practicality of the models. Findings - The resulting four binary selection models reveal overall satisfactory classification performance in terms of various measures including AUC (area under the receiver operating characteristic curve), accuracy, F1-score, and top quartile lift, while the ensemble models (random forest and gradienct boosting) outperform the others in terms of most measures. Research implications or Originality - Although the assessment of administrative issue potential of firms is critical information to investors and financial institutions, detailed empirical investigation has lagged behind. The current research fills this gap in the literature by proposing parsimonious prediction models based on a few financial variables and validating the applicability of the models.

Gender discrimination and multivariate analysis using deboning data

  • Shim, Joon-Yong;Kim, Ha-Yeong;Cho, Byoung-Kwan;Lee, Wang-Hee
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.23-23
    • /
    • 2017
  • Recent favor on high quality food and concern on food safety have demonstrated the superiority of Hanwoo (Korean native cattle). In general, the price of cow is higher than those of steer and bull, causing cheating issues in the market. Hence, this study is to discriminate genders of Hanwoo with identification of factors which highly influence gender discrimination based on the big-size deboning data. Totally, there were 31 variables in the deboning data, and we divided into them two categories: data obtained before and after deboning. Discriminant function analysis was then applied into the data to determined the accuracy of gender discrimination in Hanwoo. The result showed that Hanwoo could be classified by gender with 99.2% of accuracy when using all 31 variables. In detail, it was possible to identify 93 of 94 bulls (98.9%), 96 of 96 cows (100%) and 74 of 75 steers (98.7%). The most significant variables was chuck, sirloin, armbone shin, plates, retail and cuts percentage, sequentially. With variables obtainable before deboning, accuracies of classification were 91.5% for bulls, 92.7% for cows, and 89.3% for steers. The most significant variables was water, cold carcass weight and back-fat thickness. The discrimination accuracy was higher with data obtainable after deboning: bulls (98.9%), cows (99.0%) and steers (98.7%). In this case, chuck, sirloin and armbone shin were the factors determined the classification ability. This study showed that Hanwoo can be classified based on deboning data with appropriate statistics, further suggesting weight of cut of beef might be the standard for gender classification.

  • PDF

나노 인포매틱스 기반 구축을 위한 구글 트렌드와 데이터 마이닝 기법을 활용한 나노 기술 트렌드 분석 (Nano Technology Trend Analysis Using Google Trend and Data Mining Method for Nano-Informatics)

  • 신민수;박민규;배성훈
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.237-245
    • /
    • 2017
  • Our research is aimed at predicting recent trend and leading technology for the future and providing optimal Nano technology trend information by analyzing Nano technology trend. Under recent global market situation, Users' needs and the technology to meet these needs are changing in real time. At this point, Nano technology also needs measures to reduce cost and enhance efficiency in order not to fall behind the times. Therefore, research like trend analysis which uses search data to satisfy both aspects is required. This research consists of four steps. We collect data and select keywords in step 1, detect trends based on frequency and create visualization in step 2, and perform analysis using data mining in step 3. This research can be used to look for changes of trend from three perspectives. This research conducted analysis on changes of trend in terms of major classification, Nano technology of 30's, and key words which consist of relevant Nano technology. Second, it is possible to provide real-time information. Trend analysis using search data can provide information depending on the continuously changing market situation due to the real-time information which search data includes. Third, through comparative analysis it is possible to establish a useful corporate policy and strategy by apprehending the trend of the United States which has relatively advanced Nano technology. Therefore, trend analysis using search data like this research can suggest proper direction of policy which respond to market change in a real time, can be used as reference material, and can help reduce cost.

스마트콘텐츠 현황분석을 통한 기본요소 추출 (Study on Basic Elements for Smart Content through the Market Status-quo)

  • 김경선;박주용;김이연
    • 한국과학예술포럼
    • /
    • 제21권
    • /
    • pp.31-43
    • /
    • 2015
  • ICT(Information and Communications Technologies : 정보통신기술)는 창조경제의 핵심이 되는 기술중 하나로 기존산업과 기업의 인프라를 연결하는 매개로 사용되어 기존 상품과 서비스를 고도화하고, 새로운 상품과 서비스를 만들어내고 있다. 이와 더불어 빅데이터, 모바일, 웨어러블 등 새로운 디바이스 부문까지 주목을 받으며 신시장 개척에 귀추가 주목되고 있다. 더 나아가 IoT(Internet of Things :사물인터넷)는 인간과 인간, 인간과 사물, 사물과 사물을 연결하며 ICT기반의 사회를 더욱 곤고히 만들어 주는 역할을 하고 있다. 이는 제조업 중심의 하드웨어 개발이 소프트웨어의 개발과 함께 동시다발적으로 융합되어야 한다는 의미로 볼 수 있다. 하드웨어와 소프트웨어의 융합에서 꼭 필요한 것이 OS인데, 선두주자 구글과 애플을 필두로 관련 기업에서는 소프트웨어의 중요성을 인지하고 소프트웨어 개발에 집중 착수하였다. 이에 현 보고서(한국산업기술평가관리원: 디자인전문기술개발사업) 진행을 위해 소프트웨어 시장현황을 조사한 결과, 소프트웨어 플랫폼을 기반으로 한 구글의 안드로이드(Android)와 애플의 iOS가 전 세계시장을 장악하고 있었으며, 후발주자는 새로운 패러다임을 제시하기 위해 Web기반 OS, 유사 OS 등 을 출시하여 다양한 경로에서 시장진입을 시도하고 있다. 이러한 사회의 변화는 OS를 기본으로 누구나 개발자가 될 수 있는 스마트콘텐츠 활용에 대한 연구 필요성이 대두되었으며 범용적으로 활용할 수 있는 스마트콘텐츠에 대한 정의가 필요하며 빠른 시장변화에 대처할 수 있는 시장분석이 필요하다. 이에 본 연구에서는 문헌조사 및 스마트분류체계에 따른 앱마켓(App Market)분석, 현 콘텐츠시장 트랜드 분석을 실시하였고 스마트콘텐츠의 범용적 정의와 앱마켓에서 나타난 애플리케이션의 현황과 콘텐츠 시장현황을 비교하여 공통요소 5가지의 흐름을 파악하였다. 분석을 통하여 스마트콘텐츠 시장은 독립적이지만 서로의 연결고리를 가진 형태로 하나의 유기체와 같은 형태로 발전할 것이라 예상하였으며 기존의 기술적 관점, 문화적 관점, 비즈니스적 관점, 소비자 관점에 사회적 관점을 포함한 다시점 관점에서의 분류체계와 개발이 이루어 져야 한다.

An Exploratory Study on the Characteristics and Distribution of Traditional Liquor among China, Japan and Korea

  • Choi, In-Sik;Lee, Sang-Youn
    • 유통과학연구
    • /
    • 제12권5호
    • /
    • pp.109-117
    • /
    • 2014
  • Purpose - The study investigates the history, production methods, market scale, and distribution of the traditional liquors of three countries: South Korean sokokju, Chinese shaoxing-chiew, and Japanese sake. These have similar production methods, being made from rice or cereal, cores of their respective food industries. Research design, data, and methodology - The study investigated the history of the three liquors, liquor classification in the three countries, and production methods. It examined the scale of the traditional liquor market and these countries' distribution structure. Results - Brand cognition of traditional liquors is affected by a focus on wellbeing and LOHAS (lifestyle of health and sustainability). Promotion and marketing strategies along with a high quality image, shelf life of draft liquor, traditional liquor identification systems, and high taxes on traditional liquor, and the need for continuous R&D and training of professionals all impacted the industry. Conclusions - These countries play important roles in world trade, seeking economic integration. By forming a free trade agreement (FTA), their traditional liquors, with a proud history, can be jointly branded in the world market.

DEA를 이용한 가정식사대용식 프랜차이즈 매장 효율성 측정 (Measuring Efficiency of HMR Franchise Restaurants Using DEA)

  • 최성식;우대일
    • 한국프랜차이즈경영연구
    • /
    • 제6권1호
    • /
    • pp.1-20
    • /
    • 2015
  • Home Meal Replacement (HMR) products are ready-to-eat or pre-cooked food products that are consumed at daily home. HMR market has grown rapidly due to societal changes: increases in female social activities, silver population, and one-person households. Consumption channels of HMR can be classified into take-out, delivery, and retail. In Korean HMR market, retail sector is largely growing, but companies are focusing their business on the home delivery sector. Moreover, franchise companies are expanding their areal coverage in the HMR market based on their multi-unit strategy. However, more research on the HMR market is needed as existing studies are limited in conceptualization, classification, and processed food from malls or home-shopping channels. Therefore, we conducted the efficiency analysis on Gukseonsaeng, one of franchises that applied the take-out channel, using DEA method. According to the research on 29 franchisees of Gukseonsaeng, 77.9% of input appeared inefficient for technical efficiency, while 53.3% of input appeared inefficient for scale efficiency. Thus, we found that franchises of Gukseonsaeng are structured in increasing returns to scale (IRS), so enhancing efficiency by expanding scales need to be implemented.

사물인터넷(IoT) 기기 분류 체계 기반 공공분야 점유율 분석 (Analysis of Public Sector Sharing Rate based on the IoT Device Classification Methodology)

  • 이형우
    • 사물인터넷융복합논문지
    • /
    • 제8권1호
    • /
    • pp.65-72
    • /
    • 2022
  • 사물인터넷(IoT)은 데이터의 융합과 공유 기능을 제공하며, 다양한 첨단 기술이 함께 융복합되어 새로운 서비스를 창출하는 데 있어서 가장 근간이 되는 핵심 기술 분야이다. 하지만, 사물인터넷에 대한 분류 체계가 제각각이며 국내 공공분야를 대상으로 한정 지었을 경우 실제로 어느 정도의 점유율로 어떤 기기 등이 설치되어 운영되고 있는지에 대한 현황을 제대로 파악하기가 어려울 정도로 체계화된 자료나 연구 결과를 발견하기가 매우 어렵다. 따라서 본 연구에서는 사물인터넷 기기에 대한 분류 체계를 매출액과 출하량 및 성장률에 근거하여 현실에 맞게 관련성을 분석한 후 이를 토대로 국내 공공기관을 대상으로 실제 IoT 기기의 점유율 등을 상세 분석하였다. 도출된 분석 결과는 앞으로 IoT 기기에 대한 악성코드 공격 대응, 침해사고 분석 및 보안 취약성 강화 등 정보보호 기술 고도화를 위한 연구 분석용 IoT 기기를 선정하는 과정에서 효율적으로 활용 될 수 있을 것으로 기대된다.