• Title/Summary/Keyword: Market Price Prediction

Search Result 159, Processing Time 0.028 seconds

Locational Marginal Price Forecasting Using Artificial Neural Network (역전파 신경회로망 기반의 단기시장가격 예측)

  • Song Byoung Sun;Lee Jeong Kyu;Park Jong Bae;Shin Joong Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

Resource Demand and Price Prediction-based Grid Resource Transaction Model (자원 요구량과 가격 예측 기반의 그리드 자원 거래 모델)

  • Kim, In-Kee;Lee, Jong-Sik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.5
    • /
    • pp.275-285
    • /
    • 2006
  • This paper proposes an efficient market mechanism-based resource transaction model for grid computing. This model predicts the next resource demand of users and suggests reasonable resource price for both of customers and resource providers. This model increases resource transactions between customers and resource providers and reduces the average of transaction response times from resource providers. For prediction accuracy improvement of resource demands and suggestion of reasonable resource price, this model introduces a statistics-based prediction model and a price decision model of microeconomics. For performance evaluating, this paper measures resource demand prediction accuracy rate of users, response time of resource transaction, the number of resource transactions, and resource utilization. With 87.45% of reliable prediction accuracy, this model works on the less 72.39% of response time than existing resource transaction models in a grid computing environment. The number of transactions and the resource utilization increase up to 162.56% and up to 230%, respectively.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

Two-Stage Forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index (주가지수예측에서의 변환시점을 반영한 이단계 신경망 예측모형)

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.99-111
    • /
    • 2001
  • The prediction of stock price index is a very difficult problem because of the complexity of stock market data. It has been studied by a number of researchers since they strongly affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network(BPN). Finally, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Expectation-Based Model Explaining Boom and Bust Cycles in Housing Markets (주택유통시장에서 가격거품은 왜 발생하는가?: 소비자의 기대에 기초한 가격 변동주기 모형)

  • Won, Jee-Sung
    • Journal of Distribution Science
    • /
    • v.13 no.8
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose - Before the year 2000, the housing prices in Korea were increasing every decade. After 2000, for the first time, Korea experienced a decrease in housing prices, and the repetitive cycle of price fluctuation started. Such a "boom and bust cycle" is a worldwide phenomenon. The current study proposes a mathematical model to explain price fluctuation cycles based on the theory of consumer psychology. Specifically, the model incorporates the effects of buyer expectations of future prices on actual price changes. Based on the model, this study investigates various independent variables affecting the amplitude of price fluctuations in housing markets. Research design, data, and methodology - The study provides theoretical analyses based on a mathematical model. The proposed model uses the following assumptions of the pricing mechanism in housing markets. First, the price of a house at a certain time is affected not only by its current price but also by its expected future price. Second, house investors or buyers cannot predict the exact future price but make a subjective prediction based on observed price changes up to the present. Third, the price is determined by demand changes made in previous time periods. The current study tries to explain the boom-bust cycle in housing markets with a mathematical model and several numerical examples. The model illustrates the effects of consumer price elasticity, consumer sensitivity to price changes, and the sensitivity of prices to demand changes on price fluctuation. Results - The analytical results imply that even without external effects, the boom-bust cycle can occur endogenously due to buyer psychological factors. The model supports the expectation of future price direction as the most important variable causing price fluctuation in housing market. Consumer tendency for making choices based on both the current and expected future price causes repetitive boom-bust cycles in housing markets. Such consumers who respond more sensitively to price changes are shown to make the market more volatile. Consumer price elasticity is shown to be irrelevant to price fluctuations. Conclusions - The mechanism of price fluctuation in the proposed model can be summarized as follows. If a certain external shock causes an initial price increase, consumers perceive it as an ongoing increasing price trend. If the demand increases due to the higher expected price, the price goes up further. However, too high a price cannot be sustained for long, thus the increasing price trend ceases at some point. Once the market loses the momentum of a price increase, the price starts to drop. A price decrease signals a further decrease in a future price, thus the demand decreases further. When the price is perceived as low enough, the direction of the price change is reversed again. Policy makers should be cognizant that the current increase in housing prices due to increased liquidity can pose a serious threat of a sudden price decrease in housing markets.

An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model (다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구)

  • Lee, Jiin;Song, Jeongseok
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.552-560
    • /
    • 2021
  • With the recent development of the art distribution system, interest in art investment is increasing rather than seeing art as an object of aesthetic utility. Unlike stocks and bonds, the price of artworks has a heterogeneous characteristic that is determined by reflecting both objective and subjective factors, so the uncertainty in price prediction is high. In this study, we used LSTM Recurrent Neural Network deep learning model to predict the auction winning price by inputting the artist, physical and sales charateristics of the Korean artist. According to the result, the RMSE value, which explains the difference between the predicted and actual price by model, was 0.064. Painter Lee Dae Won had the highest predictive power, and Lee Joong Seop had the lowest. The results suggest the art market becomes more active as investment goods and demand for auction winning price increases.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Financial Forecasting System using Data Editing Technique and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 재무예측시스템)

  • Kim, Gyeong-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.283-286
    • /
    • 2007
  • This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.

  • PDF

Optimal Interval Censoring Design for Reliability Prediction of Electronic Packages (전자패키지 신뢰성 예측을 위한 최적 구간중도절단 시험 설계)

  • Kwon, Daeil;Shin, Insun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • Qualification includes all activities to demonstrate that a product meets and exceeds the reliability goals. Manufacturers need to spend time and resources for the qualification processes under the pressure of reducing time to market, as well as offering a competitive price. Failure to qualify a product could result in economic loss such as warranty and recall claims and the manufacturer could lose the reputation in the market. In order to provide valid and reliable qualification results, manufacturers are required to make extra effort based on the operational and environmental characteristics of the product. This paper discusses optimal interval censoring design for reliability prediction of electronic packages under limited time and resources. This design should provide more accurate assessment of package capability and thus deliver better reliability prediction.