• Title/Summary/Keyword: Marker Gene

Search Result 1,191, Processing Time 0.022 seconds

Development of PCR-based markers for selecting plastid genotypes of Solanum hjertingii (Solanum hjertingii 색소체 유전자형 선발을 위한 PCR 기반 분자마커 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.34-44
    • /
    • 2023
  • The tetraploid Solanum hjertingii, a wild tuber-bearing species from Mexico is a relative of potato, S. tuberosum. The species has been identified as a potential source of resistance to blackening for potato breeding. It does not exhibit enzymatic browning nor blackspot which are physiological disorders. However, due to their sexual incompatibility, somatic hybridization between S. hjertingii and S. tuberosum must be used to introduce various traits from this wild species into potato. After somatic hybridization, molecular markers are essential for selecting fusion products. In this study, the chloroplast genome of S. hjertingii was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop specific markers for S. hjertingii. The chloroplast genome has a total sequence length of 155,545 bp, and its size, gene content, order and orientation are similar to those of the other Solanum species. Phylogenic analysis including 15 other Solanaceae species grouped S. hjertingii with S. demissum, S. hougasii, and S. stoloniferum. After detailed comparisons of the chloroplast genome sequence with eight other Solanum species, we identified one InDel and seven SNPs specific to S. hjertingii. Based on these, five PCR-based markers were developed for discriminating S. hjertingii from other Solanum species. The results obtained in this study will aid in exploring the evolutionary aspects of Solanum species and accelerating breeding using S. hjertingii.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

Cigarette Smoke Extract-Treated Mouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m6A Methylation

  • Lijing Wang;Qiao Yu;Jian Xiao;Qiong Chen;Min Fang;Hongjun Zhao
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.3.1-3.23
    • /
    • 2024
  • Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1β (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea (SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계)

  • Cho Yang-Hee;Yoon Mun-Sup;Lee Jeong-Ran;Baek Hyung-Jin;Kim Chang-Yung;Kim Tae-San;Cho Eun-Gi;Lee Hee-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.

Oxidative Stress Induced Damage to Paternal Genome and Impact of Meditation and Yoga - Can it Reduce Incidence of Childhood Cancer?

  • Dada, Rima;Kumar, Shiv Basant;Chawla, Bhavna;Bisht, Shilpa;Khan, Saima
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4517-4525
    • /
    • 2016
  • Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG, and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

Current status and prospects of molecular marker development for systematic breeding program in citrus (감귤 분자육종을 위한 분자표지 개발 현황 및 전망)

  • Kim, Ho Bang;Kim, Jae Joon;Oh, Chang Jae;Yun, Su-Hyun;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.261-271
    • /
    • 2016
  • Citrus is an economically important fruit crop widely growing worldwide. However, citrus production largely depends on natural hybrid selection and bud sport mutation. Unique botanical features including long juvenility, polyembryony, and QTL that controls major agronomic traits can hinder the development of superior variety by conventional breeding. Diverse factors including drastic changes of citrus production environment due to global warming and changes in market trends require systematic molecular breeding program for early selection of elite candidates with target traits, sustainable production of high quality fruits, cultivar diversification, and cost-effective breeding. Since the construction of the first genetic linkage map using isozymes, citrus scientists have constructed linkage maps using various DNA-based markers and developed molecular markers related to biotic and abiotic stresses, polyembryony, fruit coloration, seedlessness, male sterility, acidless, morphology, fruit quality, seed number, yield, early fruit setting traits, and QTL mapping on genetic maps. Genes closely related to CTV resistance and flesh color have been cloned. SSR markers for identifying zygotic and nucellar individuals will contribute to cost-effective breeding. The two high quality citrus reference genomes recently released are being efficiently used for genomics-based molecular breeding such as construction of reference linkage/physical maps and comparative genome mapping. In the near future, the development of DNA molecular markers tightly linked to various agronomic traits and the cloning of useful and/or variant genes will be accelerated through comparative genome analysis using citrus core collection and genome-wide approaches such as genotyping-by-sequencing and genome wide association study.

Analysis of Potential Toxigenicity and Phylogeny using Target Genes in Aphanizomenon flos-aquae (Cyanophyceae) strains isolated from the Nakdong River (낙동강에서 분리된 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 목표 유전자를 이용한 잠재적 독소 생성능 및 계통학적 분석)

  • Ryu, Hui-Seong;An, Sung-Min;Lim, Chang-Kun;Shin, Ra-Young;Park, Jong-Guen;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.137-147
    • /
    • 2017
  • The identity of toxin producers remains only hypothesis unless there were identified by strain isolation and analytical confirmation of both the cyanotoxin production and the genetic identity of the monoculture. The purposes of this study were to identify a morphologic and phylogenetic classification in Aphanizomenon flos-aquae strains isolated from the Nakdong River and to investigate the potential ability of the strains to produce toxins such as saxitoxin and cylindrospermopsin using target genes. The 16S rRNA and sxtA, sxtI, cyrA, cyrJ genes were analyzed on two strains (DGUC001, DGUC003) isolated from the Nakdong River. Morphological features of the strains were observed a shape of aggregated trichomes in parallel fascicles which can reach up to macroscopic size and a hyaline terminal cell without aerotope. In addition, the 16S rRNA phylogenetic analyses showed that the strains were identified as the same species with high genetic similarity of 98.4% and grouped within a monospecific andsupported cluster I of Aphanizomenon flos-aquae selected from GenBank of the NCBI. The cyrA and cyrJ genes encoding for the cylindrospermopsin-biosynthesis were not detected in the present study. The sxtA gene was in detected both the two strains, whereas the sxtI gene which had been suggested as a suitable molecular marker to detect saxitoxin-producing cyanobacteria was not found both the strains. Thus, the two strains isolated from Nakdong River were identified as the same species of Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888, the two strains were confirmed as potential non-producing strains of the saxitoxin and cylindrospermopsin.

Association Study between Porcine LEPR-derived Microsatellite Polymorphisms and Economic Traits (돼지 leptin receptor내 초위성체 다형성과 경제형질과의 연관성 구명)

  • Choi, B.H.;Kim, T.H.;Cho, Y.M.;Lee, H.Y.;Jeon, J.T.;Cheong, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • The leptin receptor gene(LEPR) produces a high affinity receptor that mediates the regulation of the leptin gene. Leptin secreted from adipose tissue plays an important role in regulating feed intake and energy balance. In this study, a microsatellite marker within LEPR was selected and genotyped for the F2 population composed of 354 individuals from an intercross between Korean Native boars and Landrace sows. Totally, six alleles (255, 259, 261, 263, 265 and 267bp) and nineteen genotypes were detected in the population, of which the CE (261/265), CC (261/261) and EE (265/265) types were observed by 20.0%, 10.1% and 9.6%, respectively. Relationships between their genotypes and economic traits were analyzed. We found specific genotypes associated with economic traits such as body weight at 12 weeks of age/body fat including abdominal and trimmed fat/shear force (P〈0.001), body weight of 30 weeks of age (P〈0.01) and body weight of 3 weeks of age/back fat thickness (P〈0.05). The DD (263/263) and DF (263/267) types were associated with body weight at 3, 5, 12 and 30 weeks of age. The DF (263/267) type showed a highly significant effect on back fat thickness and body fat including abdominal and trimmed fat. The DF (263/267) type showed positive effect on shear force, whereas the BB (259/259) and DD (263/263) types negatively affected on tenderness.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.

Anti-proliferative Effects of β-ionone on Human Lung Cancer A-549 Cells (β-ionone의 인체 비소폐암세포 A-549에 대한 anti-proliferative 효과)

  • Lee, Sun Min;Kim, Young Sook;Jang, Wook Jin;Rakib, Abdur Md.;Oh, Tae Woo;Kim, Boh Hyun;Kim, So Young;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1351-1359
    • /
    • 2013
  • The anti-proliferative activity of ${\beta}$-ionone was investigated on human non-small lung cancer A-549 cells (designated A-549 cells). A-549 cells were treated with various concentrations of ${\beta}$-ionone (1, 5, 10, and 15 ${\mu}M$) for two, four, and six days. Biochemical markers related to the growth inhibition of A-549 cells by ${\beta}$-ionone were measured at the second day of incubation. ${\beta}$-Ionone inhibited the growth of A-549 cells by dose-and time-dependent manners, resulting in an $IC_{50}$ of 5.0 ${\mu}g/ml$ at the second day of incubation. ${\beta}$-Ionone induced apoptosis by a dose-dependent manner. ${\beta}$-Ionone increased levels of p53, p21, and Bax proteins, but suppressed expression of the Bcl-2 protein. Similarly, ${\beta}$-ionone enhanced cytochrome c release from the mitochondria to the cytosol, and induced activation of caspase-9 and -3. Additionally, ${\beta}$-ion-one reduced $cPLA_2$ and COX-2 protein levels. These results suggest that the ${\beta}$-ionone inhibits the proliferation of A-549 cells through reciprocal regulation of Bax and Bcl-2 gene expression and suppression of $cPLA_2$ and COX-2 protein expressions.