• Title/Summary/Keyword: Marker Gene

Search Result 1,196, Processing Time 0.025 seconds

Roles of Prostatic Acid Phosphatase in Prostate Cancer (Prostatic acid phosphatase의 전립선 암에서의 역할)

  • Kong, Hoon-Young;Lee, Hak-Jong;Byun, Jong-Hoe
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP) is one of the widely used biomarkers in the diagnosis of prostate cancer. It was initially identified in 1935 and is the most abundant phosphatase in the human prostate. PAP is a prostate-specific enzyme that is synthesized in prostate epithelial cells. It belongs to the acid phosphatase group that shows enzymatic activity in acidic conditions. PAP is abundant in prostatic fluid and is thought to have a role in fertilization and oligospermia. It also has a potential role in reducing chronic pain. But one of the most apparent functions of PAP is the dephosphorylation of macromolecules such as HER-2 and PI3P that are involved in the ERK1/2 and MAPK pathways, which in turn leads to inhibition of cell growth and tumorigenesis. Currently, clinical trials using PAP DNA vaccine are underway and FDA-approved immunotherapy using PAP is commercially available. Despite these clinically important aspects, molecular mechanisms underlying PAP regulation are not fully understood. The promoter region of PAP was reported to be regulated by NF-${\kappa}B$, TNF-${\alpha}$, IL-1, androgen and androgen receptors. Here, the features of PAP gene and protein structures together with the function, regulation and roles of PAP in prostate cancer are discussed.

Expression of MicroRNA-221 in Korean Patients with Multiple Myeloma (한국인의 다발성골수종 환자에서 MicroRNA-221의 발현)

  • Choi, Woo-Soon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • Multiple myeloma (MM) is the leading cause of death among hematologic neoplasms. Recently, microRNA has been reported to be useful in the diagnosis of multiple myeloma. This study examined whether miR-221 could be used as a diagnostic marker for multiple myeloma. The study was performed on 20 patients with multiple myeloma without any other hematological diseases. MicroRNA extraction was performed using formalin-fixed paraffin-embedded (FFPE) tissues obtained from the bone marrow of patients with multiple myeloma. miR-15a, miR-16, miR-21, miR-181a, and miR-221 were selected as the microRNA target genes for multiple myeloma. The significance of microRNA was based on a fold change of <1.5. To quantify the fold changes, data normalized to the human gene, SNORD43, were used as the values of the patient group. Fold change values greater than 1.5 were defined as "overexpression", whereas values less than -1.5 were defined as "underexpression". Of note, 65.0% (13/20) of samples showed significant "overexpression" in the levels of miR-221 expression and plasma cells with a group of more and less than 30% in MM patients did not show any significance of plasma cell (P<0.05). The results of other studies showing a correlation between the expression of miR-221 and MM in Caucasians were confirmed. These results suggest that miR-221 may be a useful indicator for diagnosing patients with MM. In conclusion, miR-221 is useful in the diagnosis and determining the prognosis of multiple myeloma in Koreans.

Genetic Diversity and Population Genetic Structure of Exochorda serratifolia in South Korea (가침박달 집단의 유전다양성 및 유전구조 분석)

  • Hong, Kyung Nak;Lee, Jei Wan;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.122-128
    • /
    • 2013
  • Genetic diversity and population genetic structure were estimated in nine natural populations of Exochorda serratifolia in South Korea using ISSR marker system. Average of polymorphic loci per primer was 5.8 (S.D.=2.32) and percentage of polymorphic loci per population was 78.7% with total 35 loci from 6 ISSR primers. In AMOVA, 27.8% of total genetic variation came from genetic difference among populations and 72.2% was resulted from difference among individual trees within populations. Genetic differentiations by Bayesian inference were 0.249 of ${\theta}^{11}$ and 0.227 of $G_{ST}$. Inbreeding coefficient for total populations was 0.412. There was significant correlation between genetic distance and geographic distance among populations. On the results of Bayesian cluster analysis, nine populations were assigned into three groups. The first group included 5 populations, and the second and the third had two populations per group, respectively. These three regions could explain 10.0% of total genetic variation from hierarchical AMOVA, and the levels of among-population and among-individual were explained 19.7% and 70.3%, respectively. The geographic distribution of populations following the three Bayesian clusters could be explained with mountain range as Baekdudaegan which is the main chain of mountains in Korea. The mountains as the physical barrier might hamper gene flow in the pearlbush. So when protected areas are designated for conservation of this species, we should consider those three regions into considerations and would better to choose at least one population per region.

Use of Real-Time Quantitative PCR to Identify High Expressed Genes in Head and Neck Squamous Cell Carcinoma Cell Lines

  • Lee, Yong-Gyoo;Chun, So-Young;Lee, Hae-Ahm;Sohn, Yoon-Kyung;Kang, Ku-Seong;Kim, Joung-Ok;Yun, Sang-Mo;Kim, Jung-Wan;Jang, Hyun-Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.1
    • /
    • pp.69-75
    • /
    • 2006
  • Head and neck squamous cell carcinoma(HNSCC) is the sixth most common cancer among men in the developed world affecting the tongue, pharynx, larynx and oral cavity. HNSCC is thought to represent a multistep process whereby carcinogen exposure leads to genetic instability in the tissue and accumulation of specific genetic events, which result in dysregulation of proliferation, differentiation, and cell loss and the acquisition of invasive capacity. Despite therapeutic and diagnostic progress in oncology during the past decades, the prognosis of HNSCC remains poor. Thus it seems that finding a biological tumor markers which will increase the early diagnosis and treatment monitoring rates, is of paramount importance in respect to improving prognosis. In an effort to identify gene expression signatures that may serve as biomarkers, this study several genes were selected, such as H3,3A, S100A7, UCHL1, GSTP1, PAI-2, PLK, TGF${\beta}$1 and bFGF, and used 7 HNSCC cell lines that were established various anatomical sites, and also 17 other cancer cell lines were used for control group using real-time quantitative RT-PCR and immunocytochemical analysis with a monoclonal antibody. In this study, S100A7 showed a clearly restricted occurrence in tongue originated cell line, and GSTP1 expression level in the pharynx originated cell line was very increased, relative to corresponding other cell lines. These results suggest that S100A7 and GSTP1 genes' expression can occur during tongue and pharynx originated head and neck tumorigenesis and that genetic change is an important driving force in the carcinogenesis process. This data indicate that S100A7 and GSTP1 expression pattern in HNSCC reflect both diagnostic clue and biological marker. And this is provides a foundation for the development of site-specific diagnostic strategies and treatments for HNSCC.

Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner

  • Kang, Jiho;Boonanantanasarn, Kanitsak;Baek, Kyunghwa;Woo, Kyung Mi;Ryoo, Hyun-Mo;Baek, Jeong-Hwa;Kim, Gwan-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.3
    • /
    • pp.101-110
    • /
    • 2015
  • Purpose: Sclerostin, an inhibitor of Wnt/${\beta}$-catenin signaling, exerts negative effects on bone formation and contributes to periodontitis-induced alveolar bone loss. Recent studies have demonstrated that serum sclerostin levels are increased in diabetic patients and that sclerostin expression in alveolar bone is enhanced in a diabetic periodontitis model. However, the molecular mechanism of how sclerostin expression is enhanced in diabetic patients remains elusive. Therefore, in this study, the effect of hyperglycemia on the expression of sclerostin in osteoblast lineage cells was examined. Methods: C2C12 and MLO-Y4 cells were used in this study. In order to examine the effect of hyperglycemia, the glucose concentration in the culture medium was adjusted to a range of levels between 40 and 100 mM. Gene expression levels were examined by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Top-Flash reporter was used to examine the transcriptional activity of the ${\beta}$-catenin/lymphoid enhanced factor/T-cell factor complex. Tumor necrosis factor-alpha ($TNF{\alpha}$) protein levels were examined with the enzyme-linked immunosorbent assay. The effect of reactive oxygen species on sclerostin expression was examined by treating cells with 1 mM $H_2O_2$ or 20 mM N-acetylcysteine. Results: The high glucose treatment increased the mRNA and protein levels of sclerostin. High glucose suppressed Wnt3a-induced Top-Flash reporter activity and the expression levels of osteoblast marker genes. High glucose increased reactive oxygen species production and $TNF{\alpha}$ expression levels. Treatment of cells with $H_2O_2$ also enhanced the expression levels of $TNF{\alpha}$ and sclerostin. In addition, N-acetylcysteine treatment or knockdown of $TNF{\alpha}$ attenuated high glucose-induced sclerostin expression. Conclusions: These results suggest that hyperglycemia increases sclerostin expression via the enhanced production of reactive oxygen species and $TNF{\alpha}$.

Genetic diversity and structure of Pulsatilla tongkangensis as inferred from ISSR markers (ISSR 표지자에 의한 동강할미꽃(Pulsatilla tongkangensis)의 유전다양성과 구조)

  • Kim, Zin-Suh;Jo, Dong-Gwang;Jeong, Ji-Hee;Kim, Young-Hee;Yoo, Ki-Oug;Cheon, Kyoung-Sic
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.360-367
    • /
    • 2010
  • The genetic diversity and structure of P. tongkangensis in 5 populations from 3 regions was investigated using 56 markers derived from 6 ISSR primers. Genetic diversity at the species level (P=94.6, SI=0.377, h=0.240) was substantial considering the limited distribution and small size of populations. Genetic differentiation among regions (12%) and among populations (13%) in the region was not clearly evident, which suggested a moderate level of gene flow among adjacent populations. The Mantel test revealed a significant correlation between genetic differentiation (${\Phi}_{ST}$) and geographic distance among populations. This was supported by cluster analysis and principal coordinate analysis (PCoA). The significant difference in marker band frequency at many loci and their fixation in opposite directions in the smallest and most isolated population SC were considered due to genetic drift. Therefore, the genetic diversity of P. tongkangensis could be compromised if the distribution area or the size of the population was further reduced. In particular, small and isolated populations could be at great risk of extinction. Considering this, the unique habitats of P. tongkangensis should be protected and the reduction of population size should be closely monitored. Conservation efforts including the seeding and planting of seedlings should be done carefully based on their genetic and ecological traits. Our data support the argument that establishing an integrated management system for the efficient conservation of P. tongkangensis is critical.

Mitochondrial Genetic Diversity and Phylogenetic Relationships of Siberian Flying Squirrel(Pteromys volans) Populations

  • Lee, Mu-Yeong;Park, Sun-Kyung;Hong, Yoon-Jee;Kim, Young-Jun;Voloshina, Inna;Myslenkov, Alexander;Saveljev, Alexander P.;Choi, Tae-Young;Piao, Ren-Zhu;An, Jung-Hwa;Lee, Mun-Han;Lee, Hang;Min, Mi-Sook
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.269-277
    • /
    • 2008
  • Siberian flying squirrel, an endangered species in South Korea, is distributed through major mountain regions of South Korea. The number of Siberian flying squirrel(Pteromys volans) in South Korea has decreased and their habitats are fragmented and isolated because of anthropogenic activities. So far no molecular genetic data has, however, been available for their conservation and management. To obtain better information concerning genetic diversity and phylogenetic relationships of the Siberian flying squirrel in South Korea, we examined 14 individuals from South Korea, 7 individuals from Russia, and 5 individuals from northeastern China along with previously published 29 haplotypes for 1,140 bp of the mtDNA cytochrome b gene. The 14 new individuals from South Korea had 7 haplotypes which were not observed in the regions of Russia and Hokkaido. The level of genetic diversity(0.616%) in the South Korean population was lower than that in eastern Russia(0.950%). The geographical distribution of mtDNA haplotypes and reduced median network confirmed that there are three major lineages of Siberian flying squirrel, occupying; Far Eastern, northern Eurasia, and the island of Hokkaido. The South Korean population only slightly distinct from the Eurasia, and eastern Russian population, and is part of the lineage Far Eastern. Based on these, we suggest that the South Korean population could be considered to belong to one partial ESU(Far Eastern) of three partial ESUs but a different management unit. However, the conservation priorities should be reconfirmed by nuclear genetic marker and ecological data.

Development of Near-isogenic Japonica Rice Lines with Enhanced Resistance to Magnaporthe grisea

  • Kwon, Soon-Wook;Cho, Young-Chan;Kim, Yeon-Gyu;Suh, Jung-Pil;Jeung, Ji-Ung;Roh, Jae-Hwan;Lee, Sang-Kyu;Jeon, Jong-Seong;Yang, Sae-Jun;Lee, Young-Tae
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.407-416
    • /
    • 2008
  • Thirteen near-isogenic lines (NILs) of japonica rice were developed via a backcross method using the recurrent parent Chucheong, which is of good eating quality but is susceptible to Magnaporthe grisea, and three blast resistant japonica donors, Seolak, Daeseong and Bongkwang. The agro-morphological traits of these NILs, such as heading date, culm length, and panicle length, were similar to those of Chucheong. In a genome-wide scan using 158 SSR markers, chromosome segments of Chucheong were identified in most polymorphic regions of the 13 NIL plants, and only a few chromosome segments were found to have been substituted by donor alleles. The genetic similarities of the 13 NILs to the recurrent parent Chucheong averaged 0.961, with a range of 0.932-0.984. Analysis of 13 major blast resistance (R) genes in these lines using specific DNA markers showed that each NIL appeared to contain some combination of the four R genes, Pib, Pii, Pik-m and Pita-2, with the first three genes being present in each line. Screening of nine M. grisea isolates revealed that one NIL M7 was resistant to all nine isolates; the remaining NILs were each resistant to between three and seven isolates, except for NIL M106, which was resistant to only two isolates. In a blast nursery experiment, all the NILs proved to be more resistant than Chucheong. These newly developed NILs have potential as commercial rice varieties because of their increased resistance to M. grisea combined with the desirable agronomic traits of Chucheong. They also provide material for studying the genetic basis of blast resistance.

Development of L-Lysine Producing Strains from Cellulosic Substrate by the Intergeneric Protoplast Fusion- Conditions for Formation and Regeneration of Protoplast - (속간 원형질체 융합에 의한 섬유질 기질로부터 L-lysine 생산균주 개발 -원형질체의 형성 및 재생 -)

  • 성낙계;정덕화;이무영;정영철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.150-155
    • /
    • 1988
  • In order to produce L-lysine from cellulosic substrates by the intergeneric protoplast fusion between cellulolytic bacteria, Cellulomonas flavigena KFCC31221 and amino acid producing bacteria, Brevibacterium flavum ATCC14067, Corynebacteriurn glutamicum ATCC13032, conditions for protoplast formation and regeneration of these strains were investigated. After the strains were mutated with 500$\mu\textrm{g}$/$m\ell$ N-methyl-N'-nitro N-nitrosoguanidine for 30 min and the mutants were enriched by treating 300$\mu\textrm{g}$/$m\ell$ penicillin-G for 2 hrs, B. flavum Hse- Str$^{r}$ , C. glutamicum Met$^{-}$Thr$^{-}$ Rif$^{r}$ and Cellulomonas flavigena Thr$^{-}$Val$^{-}$Kan$^{r}$ were isolated. The rate of protoplast formation ranged from 95 to 98% when strains were treated at the concentration of 500$\mu\textrm{g}$/$m\ell$ of lysozyme, pH 6.5, 33$^{\circ}C$, for 6 hrs. in Tris- malate buffer supplemented with 0.4M sucrose as osmotic stabilizer. Approximately 30-33% protoplast was regenerated on the regeneration complete medium(RCM) containing 1.5% agar and 0.5M sodium succinate overlaid with the same medium except 0.7% agar.

  • PDF

Blast Resistant Genes Distribution and Resistance Reaction to Blast in Korean Landraces of Rice (Oryza sativa L.)

  • Song, Jae Young;Lee, Gi-An;Choi, Yu-Mi;Lee, Sukyeung;Lee, Kwang Beom;Bae, Chang-Hyu;Jung, Yeonju;Hyun, Do-Yoon;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.687-700
    • /
    • 2014
  • Rice blast (Magnaporthe oryza B.) is one of the most important diseases in rice that causing great yield losses every year around the world. It is important to screen valuable genetic resources for improving blast resistance. This study was conducted to identify the blast resistance in 279 Korean rice landraces using blast nursery tests and isolate inoculum screening. The results showed that 11 landrace accessions found to be resistant to rice blast in blast nursery and inoculation screening tests and the degree of lesions in most accessions showed that they were susceptible to reactions. In order to find the distribution of blast resistant genes, a molecular survey was conducted to identify the presence of major blast resistance (R) gene in 279 Korean landraces. The results revealed that their frequency distribution was Pik-m (36.2%), Piz (25.4%), Pit (13.6%), and Pik (10%). Besides, the frequency distribution of Piz-t, Pii, Pik-m/Pik-p, Pi-39(t), Pib, Pi-d(t)2, Pita/Pita-2 and Pi-ta genes were identified as less than 10%. The results did not consist with the reactions against blast diseases between genotypes and phenotypic part of the nursery tests and isolate inoculation. For concluding these results, we used genome-wide SSR markers that have closely been located with resistance genes. The PCoA analysis showed that the landrace accessions formed largely two distinct groups according to their degree of blast resistance. By comparing genetic diversities using polymorphic information contents (PIC) value among the resistant, total and susceptible landraces, we found that PIC values decreased in four SSR markers and increased in six markers in the resistant accessions, which showed contrary to total and susceptible groups. These regions might be linked to resistance alleles. In this study, we evaluated the degree of blast resistance and the information about the distribution of rice blast resistant genes in Korean rice landraces. This study might be the basis for association analysis of blast resistance in rice.