• 제목/요약/키워드: Marker Efficiency

검색결과 212건 처리시간 0.025초

한국산 연어류에서 Genetic Marker 개발을 위한 생화학적 연구 (A Biochemical Study for the Development of Genetic Marker on Salmonids in Korea)

  • 홍경표;명정구;손진기;박철원
    • 한국수산과학회지
    • /
    • 제27권1호
    • /
    • pp.83-88
    • /
    • 1994
  • 연어, 산천어, 무지개송어 등 우리나라의 연어과 어류에 있어서 종의 식별 및 3배체 어류의 판정에 동위효소를 genetic marker로 활용할 수 있는지의 가능성을 타진하고자 LDH, MDH, IDH, a-GPDH, ME, 6-PGD, PGI 및 PGM 등 8개 동위효소에 대하여 골격근 조직을 중심으로 분석을 실시하였다. 이중 골격근 조직의 MDH-B와 IDH loci에서 종간에 뚜렷한 차이를 나타내었으며 특히 MDH-B loci의 b 유전자의 출현빈도는 연어나 산천어에서는 거의 나타나지 않았으나 무지개송어에서는 매우 높게 나타났다. 또한 IDH도 무지개송어와 산천어간의 genetic marker로 유용할 것으로 보인다. 한편, PGI는 3배체 어류 생산시 친어를 상호 대립유전자(allele)의 동형접합(homozygote)인 개체를 사용할 경우 이의 효율적인 판정을 위한 새로운 marker로 활용할 수 있는 가능성을 가지고 있는 것으로 나타났으며 다른 loci에서는 별다른 차이를 발견할 수가 없었다.

  • PDF

Strategies for Improving Potassium Use Efficiency in Plants

  • Shin, Ryoung
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.575-584
    • /
    • 2014
  • Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci.

Identification of Mating Type Loci and Development of SCAR Marker Genetically Linked to the B3 Locus in Pleurotus eryngii

  • Ryu, Jae-San;Kim, Min Keun;Ro, Hyeon-Su;Kang, Young Min;Kwon, Jin-Hyeuk;Kong, Won-Sik;Lee, Hyun-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1177-1184
    • /
    • 2012
  • In order to estimate how diverse the mating types in Pleurotus eryngii from different regions are, pairings between monokaryons derived from inter- and intra-groups were done. Sixteen and 15 alleles were identified at loci A and B from the 12 strains. In the P. eryngii KNR2312, widely used for commercial production, four mating loci, A3, A4, B3, and B4, were determined. Those loci, except A3, were found in 4 strains out of 12 strains. To improve breeding efficiency, especially in mating type determination, RAPD and BSA were performed to screen for a mating type specific marker. The SCAR marker 13-$2_{2100}$ was developed based on the RAPD-derived sequence typing B3 locus. The sequence analysis of 13-$2_{2100}$ revealed that it contained a conserved domain, the STE3 super-family, and consensus sequences like the TATA box and GC box. It seems likely that the SCAR marker region is a part of the pheromone receptor gene.

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

  • Lee, Song Hee;Ali, Asjad;Ha, Byeongsuk;Kim, Min-Keun;Kong, Won-Sik;Ryu, Jae-San
    • Mycobiology
    • /
    • 제47권2호
    • /
    • pp.200-206
    • /
    • 2019
  • Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker $7-2_{299}$ distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.

Agrobacterium을 이용한 형질전환에서 sonication과 vir 유전자들의 효과 (Effect of Sonication and vir Genes on Transient Gene Expression in Agrobacterium-Mediated Transformation)

  • 이병무
    • 생명과학회지
    • /
    • 제11권4호
    • /
    • pp.316-320
    • /
    • 2001
  • Sonication tremendously improves the efficiency of Agrobacterium infection by introducing small and uniform fissures and channels throughout the targeted tissue. Using shoot tips of cotton as explants, the effect of sonication treatment and virulence genes in Agrobacterium tumefaciens on transformation efficiency was investigated. The pat gene which encodes resistance to the herbicide, glufosinate, was used as a selectable marker. Transformation efficiency was evaluated on th basis of survival rates of cocultivated shoot tips on selection medium containing 2.5 mg/l gulfosinate-ammonium(ppt) adn 25. mg/l Clavamax. Sonication from 5 to 15 second has a positive effect on shoop tip survival. However, whil virE as well as virG or vir GN54D showed an enhancement in transformation efficiency, virE,. virG resulted in the most significant enhancement. Overall, the combination of additional virG/virE gene and sonication treatment resulted in the most significant increase in transformation efficiency.

  • PDF

DNA marker를 이용한 벼의 조직배양 효율개선 (Improvement of cultural efficiency using DNA markers in anther and seed culture of rice)

  • 김홍집;김태헌;손재근
    • Current Research on Agriculture and Life Sciences
    • /
    • 제27권
    • /
    • pp.21-28
    • /
    • 2009
  • 벼의 약 및 현미 배양효율과 관련된 DNA marker를 이용하여 인디카형 벼 품종인 'IR 36'의 조직배양 효율을 개선하기 위하여 실험한 결과를 요약하면 다음과 같다. 벼품종 간에 약 및 현미배양 효율을 비교한 결과 자포니카 > 통일형 > 인디카 형의 순으로 나타났다. 그러나 MGRI집단의 약배양에서 식물체분화율이 높은 계통으로 선발된 'MGRI 079'와 'MGRI 036'의 약배양 효율은 각각 19.8%, 19.9%로 가장 높게 나타났다. 'MGRI 079'에 'IR 36'이 여교배되어 양성된 $BC_2F_4$ 90 계통에 대한 marker검정을 실시하여 positive band를 나타내는 34계통을 선발할 수 있었다. 선발된 34계통 중 10 계통의 약배양에서 캘러스 형성률은 'IR 36' 보다 현저히 높았다. 선발된 10 계통의 현미배양에서도 캘러스형성 능력과 식물체재분화율이 'IR 36' 보다 높게 나타났다. $BC_2F_4$ 계통 중에서 식물체분화능력이 높은 계통으로 선발된 $BC_2F_4$-28은 간장이 'IR 36'보다 큰 편이었으나 출수기와 미립특성은 'IR 36'과 비슷하였다.

  • PDF

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Identification of QTLs Associated with Physiological Nitrogen Use Efficiency in Rice

  • Cho, Young-Il;Jiang, Wenzhu;Chin, Joong-Hyoun;Piao, Zhongze;Cho, Yong-Gu;McCouch, Susan R.;Koh, Hee-Jong
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.72-79
    • /
    • 2007
  • Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica ${\times}$ japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 $F_8$ lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N ($N-P_2O_5-K_2O=100-80-80kg/ha$) and low-N ($N-P_2O_5-K_2O=50-80-80kg/ha$) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6%, respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends signify- cantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.