• Title/Summary/Keyword: Maritime Rainfall

Search Result 38, Processing Time 0.024 seconds

Analysis on the Effect of Spatial Distribution of Rainfall on Soil Erosion and Deposition (강우의 공간분포에 따른 침식 및 퇴적의 변동성 분석)

  • Lee, Gi-Ha;Lee, Kun-Hyuk;Jung, Kwan-Sue;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.657-674
    • /
    • 2012
  • This paper presents the effect of spatially-distributed rainfall on both rainfall-sediment-runoff and erosion or deposition in the experimental Cheoncheon catchment: upstream of Yongdam dam basin. The rainfall fields were generated by three rainfall interpolation techniques (Thiessen polygon: TP, Inverse Distance Weighting: IDW, Kriging) based only on ground gauges and two radar rainfall synthetic techniques (Gauge-Radar ratio: GR, Conditional Merging: CM). Each rainfall field was then assessed in terms of spatial feature and quantity and also used for rainfall-sediment-runoff and erosion-deposition simulation due to the spatial difference of rainfall fields. The results showed that all the interpolation methods based on ground gauges provided very similar hydrologic responses in spite of different spatial pattern of erosion and deposition while raw radar and GR rainfall fields led to underestimated and overestimated simulation results, respectively. The CM technique was acceptable to improve the accuracy of raw radar rainfall for hydrologic simulation even though it is more time consuming to generate spatially-distributed rainfall.

Study on the Relationship between Weather Conditions, Sewage and Operational Variables of WWTPs using Multivariate Statistical Methods (기상조건이 하수발생량 및 하수처리장 운전인자에 미치는 영향에 관한 통계적 분석)

  • Lee, Jae-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 2012
  • Generally, the rainfall and the influent of wastewater treatment plants (WWTPs) have strong relationship at the case of combined sewers. With the fact that the influent variations in terms of quantity and sewage quality is the most common and significant disturbance, the impact factor to the characteristics of sewage should be searched for. In this paper, the relationship between weather conditions such as humidity, temperature and rainfall and influent flowrate and contaminant concentration was analysed using factor analysis. Additionally, 3 influent types were deduced using cluster analysis and the distributions of operational variables were compared to the each groups by one-way ANOVA. The applied dataset were clustered to three groups that have the similar weather and influent conditions. These different conditions can cause the different operating conditions at WWTPs. That is, the Group 1 is for the condition with high humidity and rainfall, so DO concentration in the reactor was very high but MLSS concentration was very low because of too large flowrate. However, the Group 3 is classified to the case having low humidity, temperature, and rainfall, therefore, the SRT was the longest and the SVI was the highest due to the worst settleability in the winter for a year.

Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis (충격 신호 분석에 기반한 우적의 운동 에너지율)

  • Moraes, Macia C. da S.;Tenorio, Ricardo S.;Sampaio, Elsa;Barbosa, Humberto A.;dos Santos, Carlos A.C.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.743-754
    • /
    • 2019
  • The erosive potential of precipitation can be evaluated by the kinetic energy transferred to the soil by the impact of the rain drop. A kinetic energy rate of the rain drops was estimated by the disdrometer classifying impact signals. This equation in the form of power presented an adjustment measure between the rain rate and rainfall quantity of 97% and 95% for continental and maritime rains, respectively. The exponent of the power equation, initially, shows no dependence on the type of rainfall. However, the multiplicative factor presented variation, which can be adjusted according to rainfall events. This equation was validated by the coefficient of determination, the average absolute error and the confidence error. The kinetic energy of precipitation, associated to certain types of soil, will allow the determination of the potential of the erosion caused by the rains.

Stability Analysis of Slope in Unsaturated Soil Based on the Characteristics of Rainfall (강우특성을 고려한 불포화토 사면의 안정성 해석)

  • Lee, Gwan-Young;Lee, Kang-Il;Kim, Chan-Kee;Chang, Yong-Chai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.663-668
    • /
    • 2005
  • The present study proposed to examine the appropriateness of the ground water level condition that had a significant effect on the stability of the slopes and, for this purpose, analyzed the rise of ground water level during the rainy season by applying the average daily rainfall of Seoul for the last 30 years. The result showed that the rise of ground water level was 6.0$\sim$41.0% of the slope height, which suggests that the currently applied condition of ground water level is somewhat overestimated. In addition, the result of interpreting the stability of slopes during the rainy season, slopes were unstable in all conditions when the ground water level was at the ground surface and base failure occurred. This suggests the importance of ground water level condition in stability analysis.

  • PDF

Quantitative Kinetic Energy Estimated from Disdrometer Signal (우적 크기 탐지기 신호로 산출한 정량적 운동에너지)

  • Moraes, Macia C. da S.;Sampaio, Elsa;Tenorio, Ricardo S.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.153-160
    • /
    • 2020
  • The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index.

Improvement of Huff's Method Considering Severe Rainstorm Events (집중호우 사상을 고려한 Huff의 4분위법 개선방안)

  • Choi, Soyung;Joo, Kyungwon;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.985-996
    • /
    • 2014
  • When designing hydraulic structures, the chosen method of time distribution in a hyetograph is highly significant. There are several methods used for measuring time distribution. In the case of Huff (1967), which is widely used in Korea, the Ministry of Construction and Transportation (MOCT, 2000), and the Ministry of Land, Transport and Maritime Affairs (MOLTMA, 2011) have long been increasing their use of this method. The MOLTMA uses the conventional Huff method's measurement of 1 inch (25.4 mm) as the threshold. Many researchers have pointed out that this method often leads to underestimation, because of the excessive flatness. Therefore, for this study, a new time distribution method was developed to analyze only extreme rainfall events-those over the standard of severe rainstorms (that is, more than 30 mm per hour or 80 mm per day)-and that was verified using a rainfall-runoff model and applying it to a real basin.

Water quality in Mokpo coastal area after a strong rainfall (집중 강우시 목포 주변해역의 수질 특성)

  • Kim Do-Hee;Ryu Han-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.28-37
    • /
    • 2003
  • We investigated water quality, salinity, nutrients, SS, COD and Chlorophyll-a concentrations in the seawater of the Mokpo costal area, southwestern coast of Korea. Seawater samples at 25 stations were collected in July 20, 25 and September 3, 2002 after a strong rain event. The distributions nutrients in seawater were analyzed using an method of sea water analysis presented by the ministry of Maritime Affairs and Fisheries of Korea. The sampling sites were categorized into the inner and outer harbour based on salinity distribution and difference of nutrients distributions was evidence between these two zones. Nutrients and SS inflow and distributed in the inner harbour by the discharged freshwater from Youngsan river during strong rainfall whereas they were distributed in seawater of outer harbour by natural processes in general coastal area.

  • PDF

An Estimation of Regression Equation for Temporal Distribution of Design Rainfall Using Variable Selection Method (변수선택 방법을 이용한 설계강우량 시간분포 회귀식의 산정)

  • Lee, Sung Ho;Lee, Jae Joon;Park, Jin Hee;Rhee, Dong Sop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.169-169
    • /
    • 2018
  • 국내에서는 유량자료의 부족으로 수공구조물을 설계하기 위한 기초자료로서 설계강우량을 활용하고 있다. 따라서 설계강우량의 산정 및 시간분포가 중요한 요인으로 작용하고 있으며, 국내에서는 설계강우량 시간분포를 위한 방법으로 Huff의 4분위 방법을 사용하는 것이 일반적이다. 실무에서는 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 관측소별 Huff의 무차원 누가우량 백분율을 이용하여 Huff의 4분위 방법 중 3분위의 자료를 이용하여 시간분포 회귀식을 산정하고 있으며, 회귀식의 차수는 전반적으로 결정계수가 높은 6차식을 사용하고 있다. 회귀식의 경우 고차식으로 갈수록 결정계수가 높아지는 것은 당연하지만 4차 이상의 회귀식에서는 결정계수의 차이가 미미하므로 6차식을 사용하는 것이 합리적이라고 할 수 없다. 따라서 본 연구에서는 통계적 유의수준에 기초하여 Huff 4분위 방법의 시간분포 회귀식에 대한 유의성 검정을 실시하여 회귀계수에 대한 통계적 검증을 실시하고 변수선택 방법인 전방선택법(Forward Selection)을 이용하여 유의하지 않은 회귀계수들을 제외하면서 가장 좋은 변수들로 구성된 간결한 설계강우량 시간분포 회귀식을 산정하고자 한다. 또한 산정된 회귀식과 기존 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 회귀식과 비교하여 변수선택 방법인 전방 선택법(Forward Selection)을 이용하여 산정된 회귀식의 적합성을 검증하고자 한다.

  • PDF

A Study on the Flooding Risk Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 침수 위험성 평가에 관한 연구)

  • Ryu, Seong-Reul
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Purpose: For smooth performance of flood analysis due to heavy rain disasters at energy storage facilities in the Incheon area, field surveys, observational surveys, and pre-established reports and drawings were analyzed. Through the field survey, the characteristics of pipelines and rivers that have not been identified so far were investigated, and based on this, the input data of the SWMM model selected for inundation analysis was constructed. Method: In order to determine the critical duration through the probability flood analysis according to the calculation of the probability rainfall intensity by recurrence period and duration, it is necessary to calculate the probability rainfall intensity for an arbitrary duration by frequency, so the research results of the Ministry of Land, Transport and Maritime Affairs were utilized. Result: Based on this, the probability of rainfall by frequency and duration was extracted, the critical duration was determined through flood analysis, and the rainfall amount suggested in the disaster prevention performance target was applied to enable site safety review. Conclusion: The critical duration of the base was found to be a relatively short duration of 30 minutes due to the very gentle slope of the watershed. In general, if the critical duration is less than 30 minutes, even if flooding occurs, the scale of inundation is not large.

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI) (표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가)

  • Kim, Byung-Sik;Sung, Jang-Hyun;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.887-900
    • /
    • 2012
  • Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.