• Title/Summary/Keyword: Maritime Object detection

Search Result 38, Processing Time 0.026 seconds

A Study of Kalman Filter Adaptation for Protecting Aquaculture Farms (양식어장보호를 위한 칼만필터 적용에 관한 연구)

  • Nam, Taek-Kun;Jeong, Jung-Sik;Jong, Jae-Yong;Yang, Won-Jae;Ahn, Young-Sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.273-277
    • /
    • 2005
  • In this paper, we study on adaptation of the kalman filter for FDS(fishery detection system) to protect and aquaculture farms. The FDS will detect a robbing vessel with real time and a variance of the position of fishing fields. The kalman filter for tracking system that can be detect and track the approaching object without mounting F-AIS(Fishery Automatic Identification System) is applied. Some simulation results for the acceleration object with white noise is showed and the possibility of adaptation for tracking system is discussed.

  • PDF

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

The Management of Smart Safety Houses Using The Deep Learning (딥러닝을 이용한 스마트 안전 축사 관리 방안)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.505-507
    • /
    • 2021
  • Image recognition technology is a technology that recognizes an image object by using the generated feature descriptor and generates object feature points and feature descriptors that can compensate for the shape of the object to be recognized based on artificial intelligence technology, environmental changes around the object, and the deterioration of recognition ability by object rotation. The purpose of the present invention is to implement a power management framework required to increase profits and minimize damage to livestock farmers by preventing accidents that may occur due to the improvement of efficiency of the use of livestock house power and overloading of electricity by integrating and managing a power fire management device installed for analyzing a complex environment of power consumption and fire occurrence in a smart safety livestock house, and to develop and disseminate a safe and optimized intelligent smart safety livestock house.

  • PDF

A Scale Invariant Object Detection Algorithm Using Wavelet Transform in Sea Environment (해양 환경에서 웨이블렛 변환을 이용한 크기 변화에 무관한 물표 탐지 알고리즘)

  • Bazarvaani, Badamtseren;Park, Ki Tae;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2013
  • In this paper, we propose an algorithm to detect scale invariant object from IR image obtained in the sea environment. We create horizontal edge (HL), vertical edge (LH), diagonal edge (HH) of images through 2-D discrete Haar wavelet transform (DHWT) technique after noise reduction using morphology operations. Considering the sea environment, Gaussian blurring to the horizontal and vertical edge images at each level of wavelet is performed and then saliency map is generated by multiplying the blurred horizontal and vertical edges and combining into one image. Then we extract object candidate region by performing a binarization to saliency map. A small area in the object candidate region are removed to produce final result. Experiment results show the feasibility of the proposed algorithm.

An Adaptive Background Formation Algorithm Considering Stationary Object (정지 물체를 고려한 적응적 배경생성 알고리즘)

  • Jeong, Jongmyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.55-62
    • /
    • 2014
  • In the intelligent video surveillance system, moving objects generally are detected by calculating difference between background and input image. However formation of reliable background is known to be still challenging task because it is hard to cope with the complicated background. In this paper we propose an adaptive background formation algorithm considering stationary object. At first, the initial background is formed by averaging the initial N frames. Object detection is performed by comparing the current input image and background. If the object is at a stop for a long time, we consider the object as stationary object and background is replaced with the stationary object. On the other hand, if the object is a moving object, the pixels in the object are not reflected for background modification. Because the proposed algorithm considers gradual illuminance change, slow moving object and stationary object, we can form background adaptively and robustly which has been shown by experimental results.

Deep Learning based Distress Awareness System for Small Boat (딥러닝 기반 소형선박 승선자 조난 인지 시스템)

  • Chon, Haemyung;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.281-288
    • /
    • 2022
  • According to statistics conducted by the Korea Coast Guard, the number of accidents on small boats under 5 tons is increasing every year. This is because only a small number of people are on board. The previously developed maritime distress and safety systems are not well distributed because passengers must be equipped with additional remote equipment. The purpose of this study is to develop a distress awareness system that recognizes man over-board situations in real time. This study aims to present the part of the passenger tracking system among the small ship's distress awareness situational system that can generate passenger's location information in real time using deep learning based object detection and tracking technologies. The system consisted of the following steps. 1) the passenger location information is generated in the form of Bounding box using its detection model (YOLOv3). 2) Based on the Bounding box data, Deep SORT predicts the Bounding box's position in the next frame of the image with Kalman filter. 3) When the actual Bounding Box is created within the range predicted by Kalman-filter, Deep SORT repeats the process of recognizing it as the same object. 4) If the Bounding box deviates the ship's area or an error occurs in the number of tracking occupant, the system is decided the distress situation and issues an alert. This study is expected to complement the problems of existing technologies and ensure the safety of individuals aboard small boats.

Watershed Algorithm-Based RoI Reduction Techniques for Improving Ship Detection Accuracy in Satellite Imagery (인공 위성 사진 내 선박 탐지 정확도 향상을 위한 Watershed 알고리즘 기반 RoI 축소 기법)

  • Lee, Seung Jae;Yoon, Ji Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.311-318
    • /
    • 2021
  • Research has been ongoing to detect ships from offshore photographs for a variety of reasons, including maritime security, identifying international trends, and social scientific research. Due to the development of artificial intelligence, R-CNN models for object detection in photographs and images have emerged, and the performance of object detection has risen dramatically. Ship detection in offshore photographs using the R-CNN model has also begun to apply to satellite photography. However, satellite images project large areas, so various objects such as vehicles, landforms, and buildings are sometimes recognized as ships. In this paper, we propose a novel methodology to improve the performance of ship detection in satellite photographs using R-CNN series models. We separate land and sea via marker-based watershed algorithm and perform morphology operations to specify RoI one more time, then detect vessels using R-CNN family models on specific RoI to reduce typology. Using this method, we could reduce the misdetection rate by 80% compared to using only the Fast R-CNN.

On-line Surface Defect Detection using Spatial Filtering Method (공간필터법을 이용한 온라인 표면결함 계측)

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • Defects inspection of commodities are very important with those design and manufacturing process and essential to strengthen the competitiveness of those. If on-line automatic defects detection is performed without damaging to products, the production cost shall be curtailed through the reducing man-power, economical management of Q.C(Quality Control). In this paper, it is suggested three spatial filtering methods which can extract the necessary information in case of defects being on the surface of object like iron plate. In addition, the dependence of filtering characteristics on parameters such as the pitch and width of slits is analyzed and the surface defect detection system is constructed. Several experiments were carried out for determining the adequate spatial filtering method through comparing and analyzing effects of parameters like defect's size and shape, intensity of light, noise of coherent source and slit number.

Integrated Video Analytics for Drone Captured Video (드론 영상 종합정보처리 및 분석용 시스템 개발)

  • Lim, SongWon;Cho, SungMan;Park, GooMan
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we propose a system for processing and analyzing drone image information which can be applied variously in disasters-security situation. The proposed system stores the images acquired from the drones in the server, and performs image processing and analysis according to various scenarios. According to each mission, deep-learning method is used to construct an image analysis system in the images acquired by the drone. Experiments confirm that it can be applied to traffic volume measurement, suspect and vehicle tracking, survivor identification and maritime missions.