• Title/Summary/Keyword: Maritime IoT Gateway

Search Result 5, Processing Time 0.017 seconds

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Buoy-launched Terminal Equipment and Ship-launched Gateway Equipment Based on LoRa for Identification of Fishing Gear (LoRa 기반 어구 식별용 부이 장착 단말 및 어선용 게이트웨이)

  • Kwak, Jae-Min;Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.779-786
    • /
    • 2018
  • Ministry of oceans and Fisheries declared action plan for the electric fishing gear using real name in order to prevent overusing the fishing gear and to reduce discarded fishing gear. It is needed for a technique that can efficiently transmit the information including the type and location of the fishing gear and the user's real name to the fishing boat and the control center using IoT-based communication. In this paper, we propose the buoy-launched terminal equipment and ship-launched gateway equipment based on LoRa technology for effectively executing the electric fishing gear using real name. We design and fabricate to communicate 1(gateway):200(buoy) each other under 900 MHz ISM band by using SEMTECH SX1276 chip. Also, we experiment the test on the sea and analyze the test results to prove the implementation possibility of the proposed equipments for the electric fishing gear using real name.

Design of Variable Timeslot for Hybrid MAC (하이브리드 MAC을 위한 가변 타임슬롯 설계)

  • Ryu, Jeong-Kyu;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.613-619
    • /
    • 2020
  • Hybrid media access control (MAC) is used in internet of things (IoT) network, because of communication feature concern with data capacity and communication interval between gateway and sensor nodes and the cost efficiency. Hybrid MAC consists of TDMA and CSMA generally. The distance between gateway and sensor node is openly changed in marine IoT network. Therefore, it is needed to control the period of timeslot of hybrid MAC used in marine IoT network. In this paper, the design rule of TDMA timeslot with the variable period depending on communication distance was proposed. It was confirmed from the analysis that 72 times communication between gateway and sensor nodes is possible in LoRa network by using the proposed TDMA variable timeslot scheme.

A Study on the Implementation of Intelligent Navigational Risk Assessment System for High-risk Vessel using IoT Sensor Gateway (IoT 센서연계장치를 이용한 고위험선박의 지능형 운항위험 분석 시스템 개발에 대한 연구)

  • Kim, Do-Yeon;Kim, Kil-Yong;Park, Gyei-Kark;Jeong, Jung-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • In the midst of continuing international recession, the rate of maritime traffic and marine leisure markets are consistently growing. The Republic of Korea controls the marine traffic volume through vessel traffic centers and various other management facilities. Nevertheless, the continuous growth and complexity of marine traffic is resulting in repeated occurrences of marine accidents. Recovery is very difficult in cases of human injuries or deaths caused by marine accidents due to its nature, and the scale of marine accidents is also becoming greater with advanced ship building technologies. Passenger ships, oil tankers, and other such vessels used for specific purposes requires a more detailed navigational status surveillance and analysis, and numerous research has been conducted with an objective for monitoring such special purpose vessels. However, the data elements transmitted from the ocean to the shore station are limited to AIS and ARPA. We are implementing IoT ship sensor collection and a syncing system capable of transmitting various ship sensing data to the shore station, and also proposing a Safe Navigation Status Analysis System utilizing the collected data.

Test of Communication Distance Measurement of Fishing Gear Automatic System Based on Private LoRa (Private LoRa 기반 어구 자동식별 시스템의 거리 측정 시험)

  • Lee, Seong-Real;Kim, Se-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • Since the ocean accounts for 70.8 percent of the earth's surface, the success of IoT technology in the marine industry is to collect information from devices placed in a wider range. LPWA is a feature with a wide range of communication and is very suitable for deployment in the ocean. In this paper, the real-sea performance distance experiment was carried out based on Private LoRa, a key technology for executing the electronic phrase real-name system. A private LoRa module based on sx1276 was developed, and Gateway was developed to transfer data received by private LoRa to the server using SKT Cat. M1. After installing gateways at 599 meters above sea level and experimenting with data transmission and reception at 25 km, 40 km and 60 km, we were able to see that the communication success rate was obtained to be 96.1%. 97.1% and 96.2% respectively.