• Title/Summary/Keyword: Maritime Channel

Search Result 391, Processing Time 0.023 seconds

A Single Image Defogging Algorithm Based on Multi-Resolution Method Using Histogram Information and Dark Channel Prior (히스토그램 정보와 dark channel prior를 이용한 다해상도 기반 단일 영상 안개 제거 알고리즘)

  • Yang, Seung-Yong;Yang, Jeong-Eun;Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.649-655
    • /
    • 2015
  • In this paper, we propose a defogging algorithm for a single image. Dark channel prior (DCP), which is a well-known defogging algorithm, can cause halo artifacts on boundary regions, low-contrast defogging images, and requires a large computational time. To solve these problems, we use histogram information with DCP on transmission estimation regions and a multi-resolution method. Local histogram information can reduce the low-contrast problem on a defogging image, and the multi-resolution method with edge information can reduce the total computational time and halo artifacts. We validate the proposed method by performing experiments on fog images, and we confirm that the proposed algorithm is more efficient and superior than conventional algorithms.

CFD Analysis on the Channel Shapes of Parallel Micro-Channels (병렬 마이크로 채널 형상에 따른 CFD 유동해석)

  • Choi, Yong-Seok;Lim, Tae-Woo;Kim, You-Taek;Kim, Do-Yeop
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.5
    • /
    • pp.1102-1109
    • /
    • 2013
  • An numerical analysis was performed to obtain the design parameters for parallel micro-channels. The parallel micro-channels consist of 10 square channels with a hydraulic diameter of 300 ${\mu}m$ and inlet/outlet manifolds. The channel length is 5mm, 10mm and 40mm respectively. Mass flux was set between 200~600kg/m2s as inlet boundary condition and atmospheric pressure was set as outlet boundary condition. The pressure drop in channels and manifolds were estimated by using the Shah and London correlation and the flow uniformity was represented by the velocity distributions with dimensionless velocity. The results show that the flow uniformity in channels depends on shapes of manifolds, length and mass flux.

A Study on Enthalpy Extraction Rate and Isentropic Efficiency of the Disk Type Generator using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기의 엔탈피추출율과 단열효율에 관한 연구)

  • Bae, C.O.;Kim, Y.S.;Park, Y.S.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1981-1983
    • /
    • 1998
  • The principle of the MHD generation is based on Faraday's law of induction that a eletromotive force(u ${\times}$ B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In MHD power generation system, enthalpy of the working gas is converted to electric power directly through expansion in generator channel. It means that electric power can be generated without moving mechanical linkage such as turbine blades. There are two types in the MHD generator; linear type Faraday and disk type hall generator. Disk type hall generator is the main target of this paper. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

PIV Measurement of Unsteady Flow in Wavy-Walled Channels (기복을 갖는 채널 내부 비정상흐름의 PIV계측)

  • Cho Dae-Hwan;Han Won-Hui;Choi Sang-Bom
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • This experimental study was performed to investigate internal flow and unsteady flow characteristics using a model for actual shape of a plate heat exchanger and visualization of flow through the particle image velocimetry. Seven Reynolds numbers were selected by calculation with the height of grooved channel and sectional mean velocity of inlet flow in the experiment, and instantaneous velocity distributions and flow characteristics were experimently investigated. The triangular grooved channel had a compound flow consisting of the flow in lower channel and the groove flow receiving shear stress by the channel flow in the experiment. The sheared mixing layer, in the boundary between the triangular groove and the channel, affected main flow to raise turbulent in the channel.

  • PDF

The investigation of ship maneuvering with hydrodynamic effects between ships in curved narrow channel

  • Lee, Chun-Ki;Moon, Serng-Bae;Jeong, Tae-Gweon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • The hydrodynamic interaction between two large vessels can't be neglected when two large vessels are closed to each other in restricted waterways such as in a harbor or narrow channel. This paper is mainly concerned with the ship maneuvering motion based on the hydrodynamic interaction effects between two large vessels moving each other in curved narrow channel. In this research, the characteristic features of the hydrodynamic interaction forces between two large vessels are described and illustrated, and the effects of velocity ratio and the spacing between two vessels are summarized and discussed. Also, the Inchon outer harbor area through the PALMI island channel in Korea was selected, and the ship maneuvering simulation was carried out to propose an appropriate safe speed and distance between two ships, which is required to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. Under the condition of $SP_{12}{\leq}0:5L$, it may encounter a dangerous tendency of grounding or collision due to the combined effect of the interaction between ships and external forces. Also considering the interaction and wind effect as a parameter, an overtaken and overtaking vessel in narrow channel can navigate while keeping its own original course under the following conditions; the lateral separation between two ships is about kept at 0.6 times of ship length and 15 degrees of range in maximum rudder angle. On the other hand, two ships while overtaking in curved narrow channel such as Inchon outer harbor in Korea should be navigated under the following conditions; $SP_{12}$ is about kept at 1.0 times of ship length and the wind velocity should not be stronger than 10 m/s.

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

A Study on the Fluctuation of Bottom Cold Water in the Western Channel of Korea Strait

  • Jong-Hwui Yun;Kyu-Dae Cho
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.39-47
    • /
    • 1997
  • We researched the mechanism on th flucturain of Bottom Cold Water in the western channel of Korea Strait, using 13 years(1981~1933) oceanographic data of FRDA. The bottom cold water in the western channel appears more often in summer and fall than in winter and spring, and its year-to-year variation of temperature is very large. Such variation seems to be closely related with the variations of cold waters in the subsurface layer of the southwestern East Sea. According to the longitudinal temperature distribution along the korean southeastern coast, a density difference occurs all the time at the still deepth between the western channel and the southwestern East Sea. Thus, it is inferred that the cold waters would intrude into the western channle form the subsurface layer in the southwestern East Sea as a density-driven current, and it intensity depends upon the density difference.

  • PDF

A Study on the Sparse Channel Estimation Technique in Underwater Acoustic Channel (수중음향채널에서 Sparse 채널 추정 기법에 관한 연구)

  • Gwun, Byung-Chul;Lee, Oi-Hyung;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1061-1066
    • /
    • 2014
  • Transmission characteristics of the sound propagation is very complicate and sparse in shallow water. To increase the performance of underwater acoustic communication system, lots of channel estimation technique has been proposed. In this paper, we proposed the channel estimation based on LMS(Least Mean Square) algorithm which has faster convergence speed than conventional sparse-aware LMS algorithms. The proposed method combines $L_p$-norm LMS with soft decision process. Simulation was performed by using the sound velocity profile which acquired in real sea trial. As a result, we confirmed that the proposed method shows the improved performance and faster convergence speed than conventional methods.