• Title/Summary/Keyword: Marinobacter

Search Result 14, Processing Time 0.027 seconds

Isolation and Characterization of Marinobacter sp. KS-1, which Produces a Chondroitin Sulfate-like Mucopolysaccharide

  • Lee, Dae-Sung;Kim, Kyung-Suk;Lee, Myung-Suk;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.210-215
    • /
    • 2010
  • In an effort to isolate a bacterium producing chondroitin sulfate (CS), a marine bacterium, KS-1, which produces mucopolysaccharides, was isolated from seawater and identified as Marinobacter sp. based on analyses of its morphological and biochemical traits and 16S rDNA sequence. Agarose-gel electrophoresis showed that the KS-1 strain produces a CS-like mucopolysaccharide. Structural analysis using Fourier transform infrared spectroscopy revealed that the structure of the CS-like mucopolysaccharide produced by Marinobacter sp. KS-1 is similar to that of dermatan sulfate (CS B). However, the molecular mass of the CS-like mucopolysaccharide is higher than that of standard chondroitin sulfates. Considering the above results, we conclude that the Marinobacter sp. KS-1 produces a CS-like mucopolysaccharide that differs somewhat from CS B in molecular mass.

Complete genome sequence of Marinobacter salarius HL2708#2 isolated from a lava sea water environment on Jeju Island (제주용암 해수 환경에서 분리한 Marinobacter salarius HL2708#2의 유전체 해독)

  • Oh, Hyun-Myung;Kim, Dae-Hyun;Han, Seong-Jeong;Song, Jong-Ho;Kim, Kukhyun;Jang, Dongil
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.69-73
    • /
    • 2019
  • During screening of microbes for compounds having cosmetic benefits, we isolated Marinobacter salarius HL2708#2 from lava seawater on Jeju Island, Republic of Korea. The complete genome sequence was determined. Strain HL27080#2 features a circular chromosome of 4,304,603 bp with 57.21% G+C content and a 244,163 bp plasmid with 53.14% G+C. There were 4,180 protein coding sequences identified, along with 49 transfer RNA and 18 ribosomal RNA noncoding genes. The genome harbored genes for the utilization of alcohol, maltose/starch, and monosaccharide as sole carbon sources. Genes responsible for halophilic characteristics and heavy metal resistance could be annotated, as well as aromatic and alkane hydrocarbons. Contrary to the prior report that M. salarius is negative for nitrate and nitrite reduction, nitrate/nitrite reductase along with nitrate/nitrate transporters and nitronate monooxygenase were evident, suggesting that strain HL2708#2 may be able to denitrify extracellular nitroalkenes to ammonia.

Associated Bacterial Community Structures with the Growth of the Marine Centric Diatom Cyclotella meneghiniana: Evidence in Culture Stages (해양 원형 규조류 Cyclotella meneghiniana 성장 연관 미생물 군집구조 분석: 배양단계에 따른 증거)

  • Choi, Won-Ji;Park, Bum Soo;Guo, Ruoyu;Ki, Jang-Seu
    • Ocean and Polar Research
    • /
    • v.39 no.4
    • /
    • pp.245-255
    • /
    • 2017
  • There are a number of pieces of evidences that suggest a link between marine diatoms and microorganisms, but knowledge about related microbial communities is greatly lacking. The present study investigated the microbial community structures related to the growth of the marine diatom Cyclotella meneghiniana. We collected free-living bacteria (FLB) and particle-associated bacteria (PAB) at each growth stage (e.g., lag, exponential, stationary and death) of the diatom, and analyzed their bacterial 16S rDNA using pyrosequencing. Metagenomics analysis showed that community structures of FLB and PAB differed considerably with the progress of growth stages. FLB showed higher diversity than PAB, but variation in the different growth stages of C. meneghiniana was more evident in PAB. The proportion of the genus Hoeflea, belonging to the order Rhizobiales, was dominant in both FLB and PAB, and it gradually increased with the growth of C. meneghiniana. However, Enhydrobacter clade tended to considerably decrease in PAB. In addition, Marinobacter decreased steadily in FLB, but first increased and then decreased in PAB. These results suggest that Hoeflea, Enhydrobacter, and Marinobacter may be closely related to the growth of diatom C. meneghiniana.

Distribution of Antibiotic Resistant Microbes in Aquaculture Effluent and Disinfection by Electron Beam Irradiation (양식장 배출수중의 항생제 내성균 분포 및 전자빔 살균처리)

  • Jang, Eun-Hee;Lim, Seung-Joo;Kim, Tak-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.492-500
    • /
    • 2011
  • Antibiotic resistant microbes were isolated in catfish, trout, eel and loach aquaculture effluent. The distribution of antibiotic resistant microbes in aquaculture effluent and the disinfection efficiency of antibiotic resistant microbes by electron beam irradiation were investigated. It was shown that the multi-drug resistant bacteria were Aeromonas sp., Citrobacter sp., Bacillus sp., Marinobacter sp., Pantoea sp., Pseudomonas sp. and Enterobacter sp. in aquaculture effluent. 41.7% of total strains showed the resistance against one antibiotic agent, and 58.3% of total strains showed the resistance against more than two antibiotics. It was evidently shown that the toxicity and physicochemical properties of antibiotics can be estimated using Quantitative Structure Analysis Relationship (QSAR). Electron beam irradiation was very effective for the disinfection of antibiotic resistant bacteria from aquaculture effluent, in which the disinfection efficiency was approximately 99.9% with electron beam of 1 kGy.

Report of 39 unrecorded bacterial species in Korea belonging to Gammaproteobacteria

  • Kim, Min-Kyeong;Park, Jisun;Yun, Bo-Ram;Bae, Jin-Woo;Cha, Chang-Jun;Cho, Jang-Cheon;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Joh, Kiseong;Kim, Wonyong;Lee, Soon Dong;Seong, Chi Nam;Yi, Hana;Kim, Seung-Bum
    • Journal of Species Research
    • /
    • v.7 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • During a series of extensive surveys of prokaryotic species diversity in Korea, bacterial strains belonging to Gammaproteobacteria were isolated from various sources of aquatic and terrestrial environments. A total of 39 isolates were obtained, which represented 39 unrecorded species in Korea belonging to 20 genera in 12 families. Enterobacteriaceae was the largest family, as eight species were assigned, which was followed by Moraxellaceae (6 species) and Pseudomonadaceae (5 species). At the genus level, Marinobacter (6 species), and Pseudomonas (5 species) were the main genera, and at least two species were obtained for Acinetobacter (3 species), Psychrobacter (3 species), Shewanella (2 species), Dickeya (2 species), Salinivibrio (2 species), Vibrio (2 species) and Rhodanobacter(2 species). The detailed description of each unrecorded species is provided.

Changes in Vitamins (BB1, B7, B12) and Specific Bacteria on the Growth Stages of Marine Diatom Cyclotella meneghiniana (해양 규조류 Cyclotella meneghiniana의 성장단계에 따른 비타민(B1, B7, B12) 및 특이적 미생물의 변동)

  • Choi, Won-Ji;Ki, Jang-Seu
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.203-211
    • /
    • 2019
  • Diatom growth is affected by associated bacteria that probably provide useful substances like vitamins. In the present study, we analysed the variation of vitamins $B_1$, $B_7$ and $B_{12}$ on the growth stages of the marine diatom Cyclotella meneghiniana and assessed putative vitamin-producing bacteria (e.g., ${\alpha}$- and ${\gamma}$-proteobacteria). HPLC analysis showed that total amounts of vitamins $B_1$ and $B_{12}$ decreased with cell growth, whereas vitamin $B_7$ increased gradually on the growth stages. $B_1$ and $B_{12}$ measured 0.5% and 0.18% at the stationary phase, following 0.25% and 0.72% at the lag phase. They considerably increased to 0.75% and 0.77% at the death stage. 16S pyrosequencing showed relatively high ratios of ${\alpha}$- and ${\gamma}$-proteobacteria in all the growth stages of the C. meneghiniana. In addition, we detected previously-reported vitamin-producing bacteria, such as Marinobacter, in high numbers. The species was dorminant in the lag (relative abundance 72%) and exponetial (72%) stages, whareas it decreased in the stationary (49%) and death (48%) stages. These results suggest that vitamins $B_1$ or $B_{12}$ may be necesaary for diatom growth and that associated bacteria, including Marinobacter, may produce these substances for the cell growth of C. meneghiniana.

Bioprospecting of Culturable Halophilic Bacteria Isolated from Mediterranean Solar Saltern for Extracellular Halotolerant Enzymes

  • Ahmed Mohamed Ali;Tahany M.A. Abdel-Rahman;Mohamed G. Farahat
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.1
    • /
    • pp.76-87
    • /
    • 2024
  • Halophilic bacteria are promising reservoirs for halotolerant enzymes that have gained much attention in biotechnological applications due to their remarkable activity and stability. In this study, 62 halophilic bacterial strains isolated from a solar saltern were screened for the production of various extracellular enzymes. The results revealed that 31 strains (50%) were positive for amylase production while 26 strains (41.9%) were positive for protease. Further, 22 strains (35.48%) exhibited β-glucosidase activity and only 17 (27.41%) demonstrated lipase activity. Of the investigated halophiles, ten strains growing in the presence of ≥15% NaCl (w/v) were selected and identified based on their 16S rRNA gene sequences as Halomonas meridiana, Salinivibrio costicola, Virgibacillus oceani, Virgibacillus marismortui, Marinobacter lipolyticus, Halobacillus karajensis, Salicola salis, Pseudoalteromonas shioyasakiensis, Salinicoccus amylolyticus, and Paracoccus salipaludis. Therefore, the present study highlights the diversity of the culturable halophilic bacteria in a Mediterranean solar saltern, harboring various valuable halotolerant enzymes.

Distribution and Identification of Halophilic Bacteria in Solar Salts Produced during Entire Manufacturing Process (천일염 생산공정별 미생물 분포 조사 및 호염미생물 동정)

  • Na, Jong-Min;Kang, Min-Seung;Kim, Jin-Hyo;Jin, Yong-Xie;Je, Jeong-Hwan;Kim, Jung-Bong;Cho, Young-Sook;Kim, Jae-Hyun;Kim, So-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • In this study, we determined the changes in microbial numbers in solar salts according to the manufacturing process and storage duration. The salt samples were harvested from salt farms in Shinan (area 2) and Yeonggwang (area 1). They were serially diluted ten-fold and then placed on 4 kinds of cultivable media (mannitol salt agar, eosin methylene blue, plate count agar, and trypticase soy agar). After incubation, we obtained 62 halophilic isolates from the salt samples. Coliform and general bacteria were not detected in all salt samples. By 16S rRNA sequencing analysis, we found 12 kinds of halophilic bacteria belonging to the genera Halobacillus, Halomonas, Bacillus, Idiomarina, Marinobacter, Pseudoalteromonas, Vibrio, Salinivibrio, Virgibacillus, Alteromonas, Staphylococcus and some un-known stains. In our study, we discovered two novel species that have a 16S rDNA sequence similarity below 97%.

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.

A report of 30 unrecorded bacterial species in Korea, isolated from marine ecosystems in 2021

  • Shin, Seung Yeol;Joung, Yochan;Han, Dukki;Jeong, Ji Hye;Jeon, Yi Hyun;Song, Jaeho
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.143-154
    • /
    • 2022
  • To obtain unrecorded bacterial species in Korea, various marine samples were collected from Jeollanam-do Province, Korea in 2021. After plating the samples on marine agar and marine R2A agar, and incubating aerobically and anaerobically, approximately 1200 bacterial strains were isolated and identified using 16S rRNA gene sequences. A total of 30 strains showed ≥98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, indicating that they are unrecorded bacterial species in Korea. The unrecorded bacterial strains belonged to 4 phyla, 7 classes, 13 orders, 19 families, and 22 genera, which were assigned to Azospirllium, Loktanella, and Pseudovibrio of the class Alphaproteobacteria; Grimontia, Halomonas, Marinobacter, Microbulbifer, Photobacterium, Pseudoalteromonas, Pseudidiomarina, Ferrimonas, Shewanella, Simiduia, Thalassotalea, and Vibrio of the class Gammaproteobacteria; Priestia and Enterococcus of the class Bacilli; Persicobacter of the class Cytophagia; Aureivirga of the class Flavobacteriia; Propionigenium and Psychrilyobacter of the class Fusobacteriia; and Tepidibacter of the class Clostridia. The details of the unreported species including Gram reaction, colony and cell morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.