• Title/Summary/Keyword: Marine sediments

Search Result 815, Processing Time 0.021 seconds

Environmental Impact Assessment by Marine Cage Fish Farms: II. Estimation of Hydrogen Sulfide Oxidation Rate at $O_2$-H$_2$S Interface and Sulfate Reduction Rate in Anoxic Sediment Layer (해상 어류가두리양식장의 환경영향 평가: II. 가두리 양식장 퇴적물의 산소-황화수소 경계면에서 황화수소의 산화율 및 무산소 퇴적층에서 황산염 환원율 추정)

  • Lee, Jae-Seong;Kim, Kee-Hyun;Yu, Jun;Lee, Pil-Yong;Jung, Rae-Hong;Lee, Wong-Chan;Han, Jung-Jee;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.2
    • /
    • pp.64-72
    • /
    • 2004
  • We measured the vertical profiles of $O_2$, H$_2$S, and pH in sediment pore water beneath marine cage fish farms using a microsensor with a 25 ${\mu}{\textrm}{m}$ sensor tip size. The sediments are characterized by high organic material load. The oxygen consumption, hydrogen sulfide oxidation, and sulfate reduction rates in the microzonations (derived from the vertical distribution of chemical species concentration) were estimated by adapting a simple one-dimensional diffusion-reaction model. The oxygen penetration depth was 0.75 mm. The oxic microzonations were divided into upper and lower layers. Due to hydrogen sulfide oxidation within the oxic zone, the oxygen consumption rate was higher in the lower layer. The total oxygen consumption rate integrated with reaction zone depth was estimated to be 0.092 $\mu$mol $O_2$cm$^{-2}$ hr$^{-1}$ . The total hydrogen sulfide oxidation rate occurring within 0.7 mm thickness was estimated to be 0.030 $\mu$mo1 H$_2$S cm$^{-2}$ hr$^{-1}$ , and its turnover time in the oxic sediment layer was estimated to be about 2 minutes. This suggests that hydrogen sulfide was oxidized by both chemical and microbial processes in this zone. The molar consumption ratio, calculated to be 0.84, indicates that either other electron accepters exit on hydrogen sulfide oxidation, or elemental sulfur precipitation occurs near the $O_2$- H$_2$S interface. Total sulfate reduction flux was estimated to be 0.029 $\mu$mol cm$^{-2}$ hr$^{-1}$ , which accounted for more than 60% of total $O_2$ consumption flux. This result implied that the degradation of organic matter in the anoxic layer was larger than in the oxic layer.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.

Prediction of Seabed Topography Change Due to Construction of Offshore Wind Power Structures in the West-Southern Sea of Korea (서남해에서 해상풍력구조물의 건설에 의한 해저지형의 변화예측)

  • Jeong, Seung Myung;Kwon, Kyung Hwan;Lee, Jong Sup;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.423-433
    • /
    • 2019
  • In order to predict the seabed topography change due to the construction of offshore wind power structures in the west-southern sea of Korea, field observations for tides, tidal currents, suspended sediment concentrations and seabed sediments were carried out at the same time. These data could be used for numerical simulation. In numerical experiments, the empirical constants for the suspended sediment flux were determined by the trial and error method. When a concentration distribution factor was 0.1 and a proportional constant was 0.05 in the suspended sediment equilibrium concentration formulae, the calculated suspended sediment concentrations were reasonably similar with the observed ones. Also, it was appropriate for the open boundary conditions of the suspended sediment when the south-east boundary corner was 11.0 times, the south-west was 0.5 times, the westnorth 1.0 times, the north-west was 1.0 times and the north-east was 1.0 times, respectively, using the time series of the observed suspended sediment concentrations. In this case, the depth change was smooth and not intermittent around the open boundaries. From these calibrations, the annual water depth change before and after construction of the offshore wind power structures was shown under 1 cm. The reason was that the used numerical model for the large scale grid could not reproduce a local scour phenomenon and they showed almost no significant velocity change over ± 2 cm/s because the jacket structures with small size diameter, about 1 m, were a water-permeable. Therefore, it was natural that there was a slight change on seabed topography in the study area.

Spatial Distribution of Macrozoobenthic Organisms along the Korean Coasts in Summer Season (한국 연안의 하계 대형저서동물의 공간분포)

  • LEE, JUNG-HO;LIM, HYUN-SIG;SHIN, HYUN CHOOL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.87-102
    • /
    • 2022
  • To clarify the spatial distribution pattern of macrozoobenthos in Korean coastal waters in the summer season and investigate the relationship between community structure and benthic environmental factors, field surveys on community structure and benthic environmental factors were conducted at 117 stations in August 2017. A total of 613 macrobenthic species were identified, with the mean density of 1,228 ind./m2 and the mean biomass (wet weight) of 110.9 g WW/m2. Rich biodiversity was found at stations near Wando and along the coast of the East Sea, and there is a trend that stations with greater biodiversity also showed higher mean density as well. The dominant species in all the coastal areas in Korea was Heteromastus filiformis, which were found at most of the stations during the survey. The relatively deep areas in the East Sea were dominated by Magelona johnsoni and Maldane cristata, which were the third and ninth dominant species in the study areas, respectively. Pseudopolydora kempi and Rhynchospio sp. were observed only at the station located in the Nakdong River estuary. From the cluster analysis the stations could be clustered into three station groups with more similar faunal composition. Group A was located in the eastern coast, characterized with deep water depth and low levels of sand contents, while Group B was located in the southern coast, characterized by shallow depth of water and high content of mud and organic matter. Lastly, Group C was in the western coast, demonstrating low levels of mud content and organic matters. The biodiversity of macrobenthic species in the study area showed high positive correlation coefficients with benthic environmental factors such as sorting, clay, silt, and contents of organic matter in sediments, but negatively correlated with the sand contents. Major dominant species, Theora lata and Eriopisella sechellensis, both showed negative correlation coefficients with the sand contents, but a relatively high positive correlation with the levels of organic contents.It can be concluded that the spatial distribution patterns of macrobenthic organisms in Korean coastal waters are affected by depth, sediment type, and contents of organic matters.

Rates and Controls of Organic Matter Mineralization and Benthic Nutrient Release in the Coastal Sediment Near Lake Shihwa (시화호 인근 연안 퇴적물의 유기물 분해 특성, 저층 영양염 용출 및 조절요인)

  • SHIN, JAE-HYUK;AN, SUNG-UK;CHOI, JAE-HOON;LEE, HYO-JIN;WOO, SEUNG-BUHM;HYUN, JUNG-HO;KIM, SUNG-HAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.110-123
    • /
    • 2021
  • We investigated geochemical constituents of pore-water and sediment, rates of organic carbon (Corg) oxidation and sulfate reduction (SR), and benthic nutrient flux (BNF) to elucidate characteristic of Corg oxidation and its control in the coastal area near Lake Shihwa. The study sites were selected in the vicinity of Soraepogu (E0), Songdo tidalflat (E1) and Oido dock (E3) and in front of floodgate Shihwa tidal plant (E5). The Corg contents in the sediments and concentrations of ammonium and phosphate in pore water exhibited the highest value at EO, and gradually decreased toward the outer sea (E1, E3, E5). Rates of anaerobic Corg oxidation (260.6 mmol C m-2 d-1) and SR (91.4 mmol S m-2 d-1) at E0 were 4-9 and 6-54 times higher than at the site of outer sea (E1, E3, E5). Rates of SR at E3 and E5 accounted for 11-23% of anaerobic Corg oxidation, whereas it comprised 47-70% of anaerobic Corg oxidation at E0 and E1. Rates of Corg oxidation and SR showed a highly positive correlation with the concentration of dissolved organic carbon (r2 = 0.795 and 0.777, respectively). The BNF at E0, E1, and E3 accounted for 120-510% and 26-178%, respectively, of the N and P required for primary production in the water column. Overall results suggest that the Corg oxidation in the sediment controlled by concentration of dissolved organic carbon in the pore water and the excessive Corg oxidation stimulates the benthic nutrient flux, which may cause a phytoplankton bloom in the water column.

Human Impact on Sedimentary Environment of Estuarine Coastal Salt Marches, Southern Coastal Region of Korea Peninsula (인위적 환경변화에 따른 해안지역 퇴적환경의 변화)

  • 박의준
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.2
    • /
    • pp.111-125
    • /
    • 2001
  • An estuary is semi-inclosed inlets, located between terrestrial and marine environment. Since many estuaries along south-western coasts of Korean peninsula were affected by human settlements and activities, significant changes in sedimentation environments have been observed. The research area is divided into three distinct morpho-stratigraphic units: fluvial dominated area(Area1), mixed area(Area 2), tide-dominated area(Area3). The landform of this area has been changed by reclamation and river channel change. Temporal variations affected by dam construction, periodic freshet was iterrupted. Sediments began to continuously accmulate on estuary banks by tide. Meanwhile, because of the continuous but reduced discharge of fresh water, the salinity of estuarine sediments was declined. That processes made vegetated area( Phregmites lonivalvis and Suaeda japonica) to be expanded. It indicates that the magnitude and frequency of geomorphic processes has been significantly changed.

  • PDF

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

A Protocol of Ludox Treatment for Physiological and Molecular Biological Research of Freshwater Cyanobacteria (퇴적층 남조류 휴면세포의 생리적-분자생물학적 연구를 위한 Ludox 처리법)

  • Keonhee Kim;Kyeong-eun Yoo;Hye-in Ho;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.94-103
    • /
    • 2023
  • Cyanobacterial resting cells, such as akinetes, are important seed cells for cyanobacteria's early development and bloom. Due to their importance, various methods have been attempted to isolate resting cells present in the sediment. Ludox is a solution mainly used for cell separation in marine sediments, but finding an accurate method for use in freshwater is difficult. This study compared the two most commonly used Ludox methods (direct sediment treatment and sediment distilled water suspension treatment). Furthermore, we proposed a highly efficient method for isolating cyanobacterial resting cells and eDNA amplification from freshwater sediments. Most of the resting cells found in the sediment were akinete to the Nostocale and were similar to those of Dolichospermum, Cylindrospermum, and Aphanizomenon. Twenty times more akinetes were found in the conical tube column using the sediment that had no treatment than in the sample treated by suspending the sediment in distilled water. Akinete separated through Ludox were mainly spread over the upper and lower layers in the column rather than concentrated at a specific depth in the column layer. The mibC, Geo, and 16S rDNA genes were successfully amplified using the sediment directly in the sample. However, the amplification products of all genes were not found in the sample in which the sediment was suspended in distilled water. Therefore, 5 g to 10 g of sediment is used without pretreatment when isolating cyanobacterial resting cells from freshwater sediment. Cell isolation and gene amplification efficiency are high when four times the volume of Ludox is added. The Ludox treatment method presented in this study isolates cyanobacterial resting cells in freshwater sediment, and the same efficiency may not appear in other biotas. Therefore, to apply Ludox to the separation of other biotas, it is necessary to conduct a pre-experiment to determine the sediment pretreatment method and the water layer where the target organism exists.

Calculation of Gas Hydrate Saturation Within Unconsolidated Sediments (미고결 퇴적층내 가스하이드레이트 포화도 계산)

  • Kim, Gil-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.102-115
    • /
    • 2012
  • The purpose of this paper is to review several different methods calculating gas hydrate saturations. There are three methods using downhole log data, core data (including pressure core), and seismic velocity data. Archie's equation using electrical resistivity of downhole log data is widely used for saturation calculation. In this case, Archie's parameters should be defined accurately. And the occurrence types of gas hydrate significantly affect to saturation calculation. Thus saturation calculation should be carefully conducted. The methods using chlorinity and pressure core data are directly calculated from core sample. So far, the saturation calculated from pressure core gives accurate and quantitative values. But this method is needed much more time and cost. Thus acquisition of the continuous data with sediment depth is realistically hard. The recent several results show that the saturation calculated from resistivity data is the highest values, while the value calculated from pressure core is the lowest. But this trend is not always absolutely. Thus, to estimate accurate gas hydrate saturation, the values calculated from several methods should be compared.

The effect of geochemical characteristics and environmental factors on the growth of cultured Arkshell Scapharca broughtonii at several shellfish-farming bays on the South coast of Korea (남해 연안 피조개 (Scapharca broughtonii) 양식장의 환경특성)

  • Choi, Yoon Seok;Jung, Choon-Goo
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2016
  • To assess the effects of environmental factors on the sustainability of cultured ark shell Scapharca broughtonii production, we investigated the habitat characteristics of shellfish-farming bays (Gangjin Bay, Yeoja Bay, Keoje Bay and Deukryang Bay). We measured the physiochemical parameters (temperature, salinity, dissolved oxygen, nutrients, chemical oxygen demand and Chlorophyll a) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several shellfish-farming bays to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain sizes for Gangjin Bay, Yeoja Bay and Keoje Bay were similar, at the ratio of silt and clay in comparison with Deukryang bay of it. The C/N ratio was more than 5.9, reflecting the range arising from the mix of marine organisms and organic matter. The C/S ratio (more than 4.2) showed that the survey area had anoxic or sub-anoxic bottom conditions. The index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. We suggested that the growth of ark shell Scapharca broughtonii in the shellfish-farming bay was effected by the various environmental conditions.