• 제목/요약/키워드: Marine nuclear reactor operation

검색결과 8건 처리시간 0.031초

Study on Stiffened-Plate Structure Response in Marine Nuclear Reactor Operation Environment

  • Han Koo Jeong;Soo Hyoung Kim;Seon Pyoung Hwang
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.205-214
    • /
    • 2023
  • As the regulations on greenhouse gas emissions at sea become strict, efforts are being made to minimize environmental pollutants emitted from fossil fuels used by ships. Considering the large sizes of ships in conjunction with securing stable supplies of environment-friendly energy, interest in nuclear energy to power ships has been increasing. In this study, the neutron irradiation that occurs during the nuclear reactor operation and its effect on the structural responses of the stiffened-plate structures are investigated. This is done by changing the material properties of DH36 steel according to the research findings on the neutron-irradiated steels and then performing the structural response analyses of the structures using analytical and finite-element numerical solutions. Results reveal the influence of neutron irradiation on the structural responses of the structures. It is shown that both the strength and stiffness of the structures are affected by the neutron-irradiation phenomenon as their maximum flexural stress and deflection are increased with the increase in the amount of neutron irradiation. This implies that strength and stiffness need to be considered in the design of ships equipped with marine nuclear reactors.

Development of RETRAN-03/MOV Code for Thermal-Hydraulic Analysis of Nuclear Reactor Under Mowing Conditions

  • Kim, Jae-Hak;Park, Good-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.542-550
    • /
    • 1996
  • Nuclear ship reactors have several features different from land-based PWR's. Especially, effects of ship motions on reactor thermal-hydraulics and good load following capability for abrupt load changes are essential characteristics of nuclear ship reactors. This study modified the RETRAN-03 to analyze the thermal-hydraulic transients under three-dimensional ship motions, named RETRAN-03/MOV in order to apply to future marine reactors. First Japanese nuclear ship MUTSU reactor have been analyzed under various ship motions to verify this code. Calculations have been peformed under rolling, heaving and stationary inclination conditions during normal operation. Also, the natural circulation has been analyzed, which can provide the decay heat removal to ensure the passive safety of marine reactors. As results, typical thermal-hydraulic characteristics of marine reactors such as flow rate oscillations and S/G water level oscillations have been successfully simulated at various conditions.

  • PDF

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Comparison of auxiliary Feedwater and EDRS Operation during Natural Circulation of MRX

  • Kim, Jae-Hak;Park, Goon-Cherl
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.514-519
    • /
    • 1997
  • The MRX is an integral type ship reactor with 100 MWt power, which is designed by Japan Atomic Energy Research Institute. It is characterized by integral type PWR, in-vessel type control roe drive mechanism, water-filled containment vessel and passive decay heat removal system. Marine reactor should have high passive safety. Therefore, in this study, we simulated the loss of flow accident to verify the passive decay heat removal by natural circulation using RETRAN-03 code. auxiliary feed water systems are used for decay heat removal mechanism and results are compared with the loss of flow accident analysis using emergency decay heat removal system by JAERI. Results are very similar to case of EDRS 1 loop operation in JAERI analysis and decay heat is successfully removed by natural circulation.

  • PDF

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Application of cost-sensitive LSTM in water level prediction for nuclear reactor pressurizer

  • Zhang, Jin;Wang, Xiaolong;Zhao, Cheng;Bai, Wei;Shen, Jun;Li, Yang;Pan, Zhisong;Duan, Yexin
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1429-1435
    • /
    • 2020
  • Applying an accurate parametric prediction model to identify abnormal or false pressurizer water levels (PWLs) is critical to the safe operation of marine pressurized water reactors (PWRs). Recently, deep-learning-based models have proved to be a powerful feature extractor to perform high-accuracy prediction. However, the effectiveness of models still suffers from two issues in PWL prediction: the correlations shifting over time between PWL and other feature parameters, and the example imbalance between fluctuation examples (minority) and stable examples (majority). To address these problems, we propose a cost-sensitive mechanism to facilitate the model to learn the feature representation of later examples and fluctuation examples. By weighting the standard mean square error loss with a cost-sensitive factor, we develop a Cost-Sensitive Long Short-Term Memory (CSLSTM) model to predict the PWL of PWRs. The overall performance of the CSLSTM is assessed by a variety of evaluation metrics with the experimental data collected from a marine PWR simulator. The comparisons with the Long Short-Term Memory (LSTM) model and the Support Vector Regression (SVR) model demonstrate the effectiveness of the CSLSTM.

선박용 소형동력로의 노심 핵설계 (Nuclear Core Design for a Marine Small Power Reactor)

  • 최유선;김종채;김명현
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.146-152
    • /
    • 1996
  • 열출력 108MW$_{th}$ 급의 소형 원자로심을 설계하였다. 설계 제한 조건으로 2년의 재장전 주기, 무붕산 운전, 저출력 밀도를 채택하였고, 핵연료의 설계는 울진 3 & 4호기의 핵연료집합체 사양을 그대로 채택하였다. 노심 출력준위 제어는 제어봉만으로 가능하도록 하였으며, CASMO-3와 KINS-3를 통해 설계된 초기노심이 주기길이, 첨두계수, 감속재 온도계수, 출력계수 등의 설계 한계치를 만족하는지 확인하였다. 설계 결과, 한국형 표준원전 핵연료집합체를 장전하는 유조선급의 선박용 소형원자로를 무붕산 운전 조건으로 설계 가능함을 알 수 있었다. 단 가연성 독봉을 축방향으로 농축도를 달리하여 장전할 필요가 있으며, 독봉과 제어봉을 설계 한계까지 사용하여야 함을 알았다. 충분한 정지 반응도를 얻기위해 3개의 제어봉군 이외에 추가적인 정지제어봉군이 노심 외곽에 배치되는 안이 제기되었다.

  • PDF

液休용 이젝터 性能에 관한 CAD와 實驗結果와의 比較 (The Comparison of Experimental Results of Liquid Ejector Performance to Predictions by the Computer Aided Design Program)

  • 김경근;김명환;홍영표;고상철
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.520-527
    • /
    • 1988
  • 본 연구에서는 액체용 이젝터의 성능을 결정하는 여러가지 제약인자중 특히 레이놀즈수 변화에 따른 구동노즐의 면적비 및 목부길이가 액체용 이제터성능에 미치 는 영향을 체계적인 실험을 통하여 연구함으로써 기 개발된 CAD용 전산프로그램의 타 당성을 보다 세밀히 검토하고 이에 보완을 가하는데 연구의 목적이 있다.