• 제목/요약/키워드: Marine diesel engines

검색결과 259건 처리시간 0.172초

선박용 수냉식 디젤엔진의 개발 및 성능평가 (A Design for Water Cooling of a Marine Diesel Engine with Verification of Improvement)

  • 심한섭;전종오
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 2016
  • This paper presents a study of heat dissipation away from the fuel combustion of a marine diesel engine. These engines are operated for long periods under high load conditions: so cooling systems are necessary for radiation and control of the high temperature levels. In the study, each component of the water cooling system was developed to achieve improvements in cooling and safety. Heat transfer considerations and arrangement design for the components were important and an intercooler and exhaust manifold incorporated. An optimization of the cooling water's flow path was achieved subject to the need for convenient maintenance. The 750Ps marine diesel engine was used for performance testing of the cooling system. The test results showed adequate cooling performance improvement.

퍼지 게인 스케줄링을 이용한 선박 디젤기관의 속도 제어 (Speed Control of Marine Diesel Engines Using Fuzzy Gain Scheduling)

  • 박승수;이현식;김도응;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.638-645
    • /
    • 2002
  • This paper presents a scheme for integrating PID control, gain scheduling and emerging techniques in the field of artificial intelligence, such as fuzzy logic and genetic algorithms for the speed control of a marine diesel engine. At first, local PID controllers are designed based on a local model obtained at each speed mode, whose parameters are optimally tuned using a real-coded genetic algorithm. Then, fuzzy "if-then" rules combine the local controllers as a consequence part to implement fuzzy gain scheduling. To demonstrate the performance of the proposed fuzzy PID controller on overall operating conditions, a set of simulation works on B'||'&'||'W's 4L80MC diesel engine are carried out.t.

디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구 (A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine)

  • 김철수;정영관;장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

A Study on the Reduction of the Torsional Angular Acceleration on Chain Drive Wheel of Marine Diesel Engine

  • Kim, Sang-Jin;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.215-223
    • /
    • 2007
  • When the propulsion shafting system of marine diesel engine is designed. the vibratory stresses on shafts should be reviewed and be satisfied with limits which are laid down by classification societies In addition. the torsional vibration aspects for crankshaft of main engine are requested to be checked by engine designers. Especially. for the 4, 5, and 6-cylinder engines. the 2nd order moment compensator(s) may be installed to compensate the external moments of engine and not to excite the hull girder vibration. This moment compensator which is mounted on fore and/or after-end of engine is driven by the roller chain drive for some of MAN 2-stroke diesel engines. While the engine is running, the roller chain Is worn down, which causes the extension of roller chain. The chain therefore should be checked and tightened by periods in order to keep its functionality. However. when the torsional angular acceleration of chain drive exceeds the certain limit. the chain will suffer the excessive slack and transverse vibration. This may cause fatigue, wear or damage on the chain and the chain ultimately may be broken. The research object of this thesis is to review factors which affect the angular acceleration of chain drive and to find out how to decrease the angular acceleration of driving chain by checking factors which have a major contribution to acceleration reduction using the statistical method of DOE(design of experiment), correlation analysis and regression analysis methods.

210 kW/cyl 급 중속디젤엔진의 연료분사펌프 송출 압력파에 관한 수치 해석 (A numerical analysis of the delivery pressure wave in a 210-kW/cyl fuel injection pump for medium-speed diesel engines)

  • 공경주;정석호;이상득;고대권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.295-300
    • /
    • 2016
  • P사의 실린더 당 210 kW 급 중속디젤엔진의 연료분사펌프를 대상으로 연료 송출 압력파에 대해서 Ansys Fluent R15.0을 사용하여 수치 해석하였다. 연료 송출 압력파의 실험 결과와 수치 해석 결과가 유사하게 나타났으며, 전산유체역학을 이용한 연료분사펌프의 연료 송출 압력파에 대한 수치 해석의 신뢰성을 확인하였다.

현대중공업 중속디젤엔진 힘센엔진 패밀리의 신모델 추가 개발 (EXPANSION OF HYUNDAI'S MEDIUM SPEED DIESEL ENGINE FAMILY, HiMSEN)

  • 김종석;김주태;권오신
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.92-100
    • /
    • 2005
  • Since HiMSEN H21/32, a new medium speed diesel engine of Hyundai's own design, was introduced in 2001, Hyundai has added new models of H25/33 and H17/28 into HiMSEN engine family. These two new engines take after faithfully to the original HiMSEN concept of a PRACTICAL engine by Hi-Touch and Hi-Tech. The prototype of H25/33 was developed jointly with Rolls Royce Bergen originally and also introduced in 2001. But most of the engine design have been changed by Hyundai for the commercial versions to be a member of HiMSEN family, which has little interchangeability with the prototype. H17/28 is now under development as the smallest size of the family. This new engine also has the longest stroke of a class engine, which has been proven as the best basis for future environmental challenge. The higher compression ratio of 17 and optimized Miller Timing with Simplified pulse turbocharging system applied all HiMSEN engines as which showed the most practical solution against current heavy fuel combustion issues for the time being before introducing digital control system. This paper describes the design and development of these new HiMSEN engines and also reviews the service experiences of H21/32 and H25/33, which launched successfully.

  • PDF

박용 디젤기관에서 스월유동이 연소특성에 미치는 영향 (The Effect of Swirl Flow on Combustion Characteristics in a Marine Diesel Engine)

  • 김병현;박권하;이상수;성낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.38-49
    • /
    • 2000
  • A diesel engine has been studied for many years to improve fuel economy and to reduce emissions as important factors governing the emission performance of diesel engines. This study addresses to swirl effects on combustion characteristics in a large diesel engine. The transport equations of flows and chemical reactions are given for fully compressible fluid. The simulations have been done for compression and expansion strokes and the results are given at several crank angles which are the angles at just before injection start, TDC, ATDC 90 and just before exhaust valve open. The results show that the strength of the swirl flow makes many effects on burning fuel and forming emissions.

  • PDF

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향 (The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance)

  • 박권하;이진아;이화순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권8호
    • /
    • pp.1050-1056
    • /
    • 2010
  • 디젤기관은 공기만을 흡입 압축한 후에 연료를 분사하여 연소하기 때문에 높은 압축비가 가능하다. 높은 압축비에 의한 고효율의 장점과 연료의 직접분사에 의한 매연미립자의 배출 및 질소산화물의 배출이 많은 단점을 갖고 있다. 이러한 문제점을 해결하기 위하여 많은 연구들이 진행되었으며 수소를 흡기중에 공급하는 기술도 연구되고 있다. 본 논문에서는 미량의 수소를 연소실에 공급하여 엔진성능에 미치는 영향을 평가하였다. 토크와 엔진속도를 100%, 75%, 50%, 25%, 0%와 700rpm, 1000rpm, 1500rpm, 2000rpm로 구분하여 실험하였다. 실험결과 질소산화물이 약간 증가하였지만 연료소비율, 스모크와 일산화탄소 배출은 감소하였다. 수소의 첨가는 저부하 영역에서는 효과가 거의 없었지만 고부하 영역에서 큰 효과가 있었다.