• 제목/요약/키워드: Marine biodiversity

검색결과 393건 처리시간 0.026초

Haraldiophyllum hawaiiense sp. nov. (Delesseriaceae, Rhodophyta): a new mesophotic genus record for the Hawaiian Islands

  • Paiano, Monica O.;Huisman, John M.;Cabrera, Feresa P.;Spalding, Heather L.;Kosaki, Randall K.;Sherwood, Alison R.
    • ALGAE
    • /
    • 제35권4호
    • /
    • pp.337-347
    • /
    • 2020
  • Haraldiophyllum hawaiiense sp. nov. is described as a new mesophotic alga and a new genus record for the Hawaiian Islands. Six specimens were collected at a depth range of 81-93 m from Papahānaumokuākea Marine National Monument, and their morphology investigated, as well as molecular phylogenetic analyses of the plastidial ribulose-1,5-bisphosphate carboxylase-oxygenase large-subunit (rbcL) gene and a concatenated alignment of rbcL and nuclear large-subunit rRNA gene (LSU) sequences. Phylogenetic analyses supported H. hawaiiense sp. nov. as a distinct lineage within the genus Haraldiophyllum, and sister to a large clade containing the type species, H. bonnemaisonii, as well as H. crispatum and an undescribed European specimen. The six Hawaiian specimens were shown to be identical, but unique among other species of the genus as well as the recently segregated genus Neoharaldiophyllum, which comprises half of the species previously included in Haraldiophyllum. The vegetative morphology of H. hawaiiense sp. nov. resembles Neoharaldiophyllum udoense (formerly H. udoensis); however, no female or post-fertilization structures were found in the Hawaiian specimens to allow a more comprehensive comparison. The molecular phylogenies demonstrate that Haraldiophyllum is paraphyletic, suggesting either that the Myriogrammeae tribe includes undescribed genera, including Haraldiophyllum sensu stricto, or that Neoharaldiophyllum species should be transferred into the genus Haraldiophyllum. However, based on vegetative morphology and molecular analyses, and pending resolution of this taxonomic issue, the Hawaiian specimens are placed within the genus Haraldiophyllum. This new record for the Hawaiian Islands highlights the novel biodiversity from mesophotic depths, reaffirming the need for further investigation into the biodiversity of Mesophotic Coral Ecosystems.

In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals

  • Jiratchayamaethasakul, Chanipa;Ding, Yuling;Hwang, Ouibo;Im, Seung-Tae;Jang, Yebin;Myung, Seung-Won;Lee, Jeong Min;Kim, Hyun-Soo;Ko, Seok-Chun;Lee, Seung-Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제23권3호
    • /
    • pp.6.1-6.9
    • /
    • 2020
  • Background: Halophyte plant (HPs), a salt-resistant flora, has been reported to provide several health benefits, but the knowledge of its cosmeceutical potential is still ambiguous. Here, 70% ethanol extracts of 22 HPs collected from along the coast of South Korea were investigated for their potentials of antioxidant, anti-aging, and whitening properties for use as materials in novel cosmeceuticals. Methods: Antioxidant activities were determined by DPPH (1,1-diphenyl-2-pricrylhydrazyl) free radical and hydrogen peroxide scavenging assays, and skin aging-related enzyme activities (anti-elastase, anti-collagenase, anti-hyaluronidase, and anti-tyrosinase) were evaluated by using the spectrophotometric method. Results: Among the 22 HPs, we found that Ischaemum antephoroides f. coreana and Atriplex gmelinii extracts presented the strongest scavenging effects against DPPH free radical and hydrogen peroxide, respectively. Our finding additionally suggested that Salicornia europaea extract might provide a major source of anti-elastase and anti-hyaluronidase; meanwhile, Rosa rugosa extract showed the highest anti-collagenase effect. Furthermore, the highest tyrosinase inhibitory activity was possessed by Spartina anglica extract. Conclusion: These findings may suggest that halophyte plants showing biological activities may be potent inhibitors of tyrosinase, elastase, collagenase, and hyaluronidase and could be useful for application in cosmeceuticals.

정량적 분석에 의한 전남바다목장의 생태계 기반 어업평가 (A study on the ecosystem-based fisheries assessment by quality analysis in Jeonnam marine ranching ecosystem)

  • 박희원;최광호;장창익;서영일;김희용
    • 수산해양기술연구
    • /
    • 제49권4호
    • /
    • pp.459-468
    • /
    • 2013
  • In the application of the ecosystem-based fisheries assessment Jeonnam marine ranching ecosystem, two fisheries, funnel fishery and trap fishery, were selected as target fisheries. Black seabream, Acanthopagru schlegelii, rock bream, Sebastes inermis, gray mullet, Mugil cephalus, were selected as target species for the funnel fishery, and conger eel, Conger myriaster, was target species for the trap fishery. For assessing indicators of four management objectives, that is the maintenance of sustainability, biodiversity, habitat quality and socio-economic benefits, indicators were selected considering the availability of data, which were 5 indicators for sustainability, 3 indicators for biodiversity, 4 indicators for habitat, 2 indicators for socio-economic benefit. The Objective risk indices for sustainability and biodiversity of two fisheries were estimated at yellow zone, medium risk level. The objective risk indices for habitat and socio-economic benefit were estimated at green zone, safe level. The species risk indices (SRI) were estimated at yellow zone. The fishery risk indices (FRIs) were estimated at 1.143 and 1.400 for funnel net fishery and trap fishery, respectively. Finally the ecosystem risk index estimated at 1.184.

Comparision of antioxidant and anti-inflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe

  • Lee, Hyo-Geun;Je, Jun-Geon;Hwang, Jin;Jayawardena, Thilina U.;Nagahawatta, D.P.;Lu, Yu An;Kim, Hyun-Soo;Kang, Min-Cheol;Lee, Dae-Sung;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제24권5호
    • /
    • pp.197-206
    • /
    • 2021
  • Marine brown seaweeds are a source of functional ingredients with various biological properties. They have been used in the food and functional food industries. Brown seaweeds are divided into three parts of blades, stipe, and root. Normally seaweed blades were used as raw materials for biological research. However, there are limited uses on stipes of Ecklonia maxima (E. maxima) depending on the physicochemical, nutritional, and biological properties. Besides, the comparative studies of two structures of E. maxima, blades and stipe didn't discover previously. This study aimed to compare the potent antioxidant and anti-inflammatory activities of the two structures of E. maxima, blades and stipe in vitro studies to increase the utilization of the two structures of E. maxima. The enzyme-assisted hydrolysate from E. maxima showed significant antioxidant and anti-inflammatory activities. Among them, celluclast-assisted hydrolysate from E. maxima blades (EMBC) and viscozyme-assisted hydrolysate from E. maxima stipe (EMSV) expressed significant protection on hydrogen peroxide-induced oxidative stress. Moreover, EMBC and EMSV treatment remarkably reduced nitric oxide production by downregulation of pro-inflammatory cytokine expressions in lipopolysaccharide-stimulated Raw 264.7 cells. Especially EMBC showed strong inhibition on pro-inflammatory cytokine production compared to EMSV. Taken together research findings suggest that EMBC and EMSV possessed potent antioxidant and anti-inflammatory properties and may be utilized as functional ingredients in the food and functional food sectors.

울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용 (Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do)

  • 장형석;강남선;김경미;전병희;박준상;홍지원
    • 생명과학회지
    • /
    • 제27권10호
    • /
    • pp.1152-1160
    • /
    • 2017
  • 단세포 녹조류 균주를 경상북도 울릉군 울릉도 거북바위 주변 조수웅덩이로부터 순수분리하여 형태적, 분자적, 및 생화학적 특성을 분석한 결과 옥세노클로렐라 프로토테코이드에 속하는 것으로 밝혀졌다. 본 종은 현재까지 한국에서 공식 기록이 없는 미기록종으로 옥세노클로렐라 프로토테코이드 MM0011 균주라고 명명하였으며, 생장, 지질/광합성 색소 조성 및 바이오매스 특성에 대해 조사를 실시하였다. 분리균주는 광범위한 온도($5-35^{\circ}C$)에서 생장할 수 있었으며 1.5 M 염화나트륨 농도까지 생존할 수 있었다. 가스크로마토그래프/질량분석기를 이용한 분석 결과, 본 균주에는 영양적으로 중요한 불포화지방산이 풍부한 것으로 나타났으며, 특히 리놀네산(27.6%) 및 알파 리놀렌산(37.2%)이 주요 지방산 성분으로 확인되었다. 따라서 본 토착 미세조류 균주는 어유 또는 식물성유를 대체할 수 있는 잠재적인 오메가-3 및 오메가-6 불포화지방산 원료가 될 수 있을 것으로 사료된다. 또한, 고부가가치 항산화 물질인 루테인이 보조색소로서 본 균주에 의해 생합성 되는 것으로 밝혀졌다. 일반성분분석 결과 MM0011 균주의 휘발성물질 함량은 85.6%였으며, 원소분석 결과 총 발열량은 $20.3MJ\;kg^{-1}$으로 나타났다. 또한 배지로부터 40.5%의 전질소와 27.9%의 전인을 각각 제거할 수 있어 향후 바이오연료 원료물질 생산과 오 폐수처리를 연계할 수 있는 가능성 역시 제시하였다. 추가적으로 MM0011 바이오매스는 높은 단백질 함량(51.4%)을 갖고 있어 우수한 동물사료의 원료가 될 수 있는 가능성도 보여주고 있다. 따라서, 본 균주는 미세조류 기반 생화학 물질 생산 및 바이오매스 원료로서 상업적인 이용 가능성이 높음을 시사한다.

Taxonomic review of the Korean lumpsucker "Do-chi" reported previously as Eumicrotremus orbis (Pisces: Cyclopteridae) based on morphological and molecular characters

  • Lee, Soo Jeong;Kim, Seong Yong;Moon, Dae Yeon;Kim, Jin-Koo
    • Fisheries and Aquatic Sciences
    • /
    • 제18권4호
    • /
    • pp.405-410
    • /
    • 2015
  • The Korean lumpsucker, "Do-chi", reported previously as Eumicrotremus orbis, was reinvestigated on the basis of specimens collected from Korea, Japan, and the USA. Morphological and genetic analyses showed that "Do-chi" corresponds to Eumicrotremus taranetzi and clearly differs from E. orbis. Eumicrotremus taranetzi is readily distinguishable from E. orbis by its large, high spiny tubercles with weak, small or no prickles (small, low spiny tubercles with distinct prickles in E. orbis) and 3-4 pairs of spiny tubercles in the dorsal rows (five pairs in E. orbis). We compared partial sequences (466 bp) of the mitochondrial cytochrome c oxidase subunit I genes of "Do-chi" and other Eumicrotremus species. "Do-chi" and E. taranetzi were clustered by the smallest Kimura two-parameter genetic distance (d = 0.000-0.002) and were clearly separated from E. orbis (d = 0.035-0.037). Therefore, our results suggest that the scientific name of the Korean lumpsucker, "Do-chi" should be changed to E. taranetzi.

A New Marine Species of Miracula (Oomycota) Parasitic to Minidiscus sp. in Iceland

  • Buaya, Anthony T.;Scholz, Bettina;Thines, Marco
    • Mycobiology
    • /
    • 제49권4호
    • /
    • pp.355-362
    • /
    • 2021
  • Obligate endoparasitic oomycetes are known to ubiquitously occur in marine and freshwater diatoms, but their diversity is still largely unexplored. Many of these parasitoids are members of the early-diverging oomycete lineages (Miracula, Diatomophthora), others are within the Leptomitales of the Saprolegniomycetes (Ectrogella, Lagenisma) and some have been described in the Peronosporomycetes (Aphanomycopsis, Lagenidium). Even though some species have been recently described and two new genera were introduced (Miracula and Diatomophthora), the phylogeny and taxonomy of most of these organisms remain unresolved. This is contrasted by the high number of sequences from unclassified species, as recently revealed from environmental sequencing, suggesting the presence of several undiscovered species. In this study, a new species of Miracula is reported from a marine centric diatom (Minidiscus sp.) isolated from Skagaströnd harbor in Northwest Iceland. The morphology and life cycle traits of this novel oomycete parasite are described herein, and its taxonomic placement within the genus Miracula is confirmed by molecular phylogeny. As it cannot be assigned to any previously described species, it is introduced as Miracula islandica in this study. The genus Miracula thus contains three described holocarpic species (M. helgolandica, M. islandica, M. moenusica) to which likely additional species will need to be added in the future, considering the presence of several lineages known only from environmental sequencing that clustered within the Miracula clade.