• Title/Summary/Keyword: Marine Water Quality

Search Result 599, Processing Time 0.025 seconds

The Characteristics of Water Quality in Mokpo Harbour(I) - Centering on organic pollution and dissolved oxygen in summer- (목포항의 수질 특성(I) - 하계의 유기물 오염과 용존산소를 중심으로 -)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.99-109
    • /
    • 1997
  • The in situ observations and the seawater analyses were conducted in July and August, 1996 for the purpose of describing the characteristics of organic pollution, dissolved oxygen distributions, and the evaluation of water quality in Mokpo harbour. The vertical density distribution of water column was found to be in stable structure with higher water temperature and lower salinity on surface layer at ebb tide in summer. In July, dissolved oxygen was shown to be oversaturated on surface and bottom layers, while in August, which was shown to be oversaturated on surface layer, and to be unsaturated on bottom layer as 68∼93% of saturation percentage. Dissolved oxygen of bottom layer in August was evaluated to be under the regular grades, based on Korean standards of seawater quality. In view of COD, the seawater quality of Mokpo harbour in summer was evaluated to be deteriorated due to organic wastes and graded to be the third class, and TSS of Mokpo harbour in summer was graded to be the second class, based on Korean standards of seawater quality. In particular, COD of surface layer in August was found to be under the regular grades. It is, therefore, necessary to take measures for the control of pollution loads and the proper management of seawater quality in Mokpo harbour. The distribution patterns of DO, COD, VSS and Chlorophyll-a on surface layer along the downstream center line from inner harbour to harbour entrance were similar to one another at ebb tide in August.

  • PDF

Monthly Variation of Phytoplankton Composition and Water quality in Cupped Oyster Crassostrea gigas Culture Area in Iwon, Korea (이원면 굴, Crassostrea gigas 양식어장의 월별 식물플랑크톤 종조성 및 수질환경 변화)

  • Kim, Su Kyoung;Kim, Byeong Ho;Oh, Eun Kyoung;Song, Gi Chul;Park, Soung Yun;Hahn, Ki Yeon;Lim, Hyun Jeong
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • Phytoplankton species composition and ecological index (diversity, evenness, richness and dominance) were analysed from April 2013 to March 2014 at 10 stations of cupped oyster, Crassostrea gigas culture area in Iwon coast, Korea. Seasonal and positional variation of phytoplankton standing crops, biomass, dominant species and water quality were distinctively different according to occasionally inflow of Iwon dam reservoired water. The composition of phytoplankton species were Bacillariophyceae 98, Dinophycease 22, Chlorophycease 13, Cyanophyceae 8, Silicofalgellate 4, Euglenophyceae 2, Cryptophyceae 1 species. The most dominant species was Bacillariophyceae as 64.0%. The highest biomass of phytoplankton recorded in September as $40,910{\times}10^3$ cell/L at the station 1, near from inland water inflow area. Ecological indices (diversity, richness, evenness, and dominance index), used for structural change of phytoplankton community and water quality (temperature, dissolved oxygen, salinity) showed difference of spatiotemporal property also.

Application to the Water and Sediment Model for the Management of Water Quality in Eutrophicated Seto Inland Sea, Japan (부영양화된 뢰호내해의 수질관리를 위한 수ㆍ저질예측모델의 적용)

  • Lee In Cheol;Chang Sun-duck;Kim Jong Kyu;Ukita Masao
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.96-108
    • /
    • 1998
  • The management of water quality and fishery resources with a major environmental problem in eutrophic coastal sea is studied. The numerical experiments using the water-sediment quality model (WSQM) were carried out for the management of water quality at the Seto Inland Sea in Japan. The results of long-term water quality simulation showed responses of seawater quality to input loads to vary in different localities. A formula roughly forecasting water qualify to estimate the effect of loading abatement was proposed. The simulation for the improvement of seawater quality showed the abatements of nutrient loads such as total phosphorus (TP) and total nitrogen (TN) as well as organic loads such as chemical oxygen demand (COD) to be peformed in the eastern Seto Inland Sea from Bisan Seto to Osaka Bay. On the other hand, it is indicated that the increase of loading leads to the increase of primary production. while not straightly to the increase of fish production for the catch of fisheries.

  • PDF

WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models (기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측)

  • KIM, SOO BIN;LEE, JAE SEONG;KIM, KYUNG TAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.71-86
    • /
    • 2022
  • The water quality index (WQI) has been widely used to evaluate marine water quality. The WQI in Korea is categorized into five classes by marine environmental standards. But, the WQI calculation on huge datasets is a very complex and time-consuming process. In this regard, the current study proposed machine learning (ML) based models to predict WQI class by using water quality datasets. Sihwa Lake, one of specially-managed coastal zone, was selected as a modeling site. In this study, adaptive boosting (AdaBoost) and tree-based pipeline optimization (TPOT) algorithms were used to train models and each model performance was evaluated by metrics (accuracy, precision, F1, and Log loss) on classification. Before training, the feature importance and sensitivity analysis were conducted to find out the best input combination for each algorithm. The results proved that the bottom dissolved oxygen (DOBot) was the most important variable affecting model performance. Conversely, surface dissolved inorganic nitrogen (DINSur) and dissolved inorganic phosphorus (DIPSur) had weaker effects on the prediction of WQI class. In addition, the performance varied over features including stations, seasons, and WQI classes by comparing spatio-temporal and class sensitivities of each best model. In conclusion, the modeling results showed that the TPOT algorithm has better performance rather than the AdaBoost algorithm without considering feature selection. Moreover, the WQI class for unknown water quality datasets could be surely predicted using the TPOT model trained with satisfactory training datasets.

The Effect of CaO2 Application on the Change of Sedimentary Phosphorus Fraction and Water Quality (CaO2 적용에 따른 퇴적물의 P fraction 변화와 수질에 미치는 영향)

  • Kim, Beom-geun;Khirul, Md Akhte;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.511-520
    • /
    • 2019
  • This study was investigated to improve the phosphorus release and water quality by transformation of sedimentary P fraction for application of $CaO_2$. For the experiment, 0.5% (w/w) of $CaO_2$ was homogenized in the sediment and incubated with the control for 20 days. The analytical results showed that pH increased with $CaO_2$ and redox potential (ORP) was improved in the sediment of the reactor. The growth rate of chlorophyll-a was lower in the $CaO_2$ reactor and Dissolved Oxygen (DO) of overlying water maintained higher than that of the control. Total phosphorus (T-P) concentration in the overlying water increased from the initial concentration to 0.304mg/L in the control at 20 days. The reactor of $CaO_2$ was lowered by 29.3%. Ex-P, Fe-P and Ca-P in sediment P fraction were increased with the $CaO_2$. The formation of bound Fe-P and Ca-P in the sediments seemed to control the release of P by removing the Soluble Reactive Phosphorus (SRP) presented in the pore water. From the result, this indicated that the reduction of P release from the sediments seems to be effective in suppressing the eutrophication of P and improving the oxygen condition in the water quality with the application of $CaO_2$.

Variations in algal distribution and diversity in oceanic island and inland freshwater reservoirs : a step toward for securing diverse freshwater resources (섬 및 내륙 담수지 내 조류 분포 및 다양성 변화 조사 : 다양한 담수원 확보를 위한 첫걸음)

  • Jong Myong Park;Yoo-Kyeong Kim;A Hyun Lee;Hee-Jeong Lee;Yeon-Ja Koh;Nam-Soo Jun;Wan-Soon Kwack
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • This study analyzed the distribution, diversity, and density variation of algal clusters in a freshwater reservoir from an oceanic island and a traditional inland water system to gain insights on future marine freshwater resource management. In the Paldang water system (Han River), despite the upstream Paldang Dam and the downstream Jamsil underwater reservoir being in the same meteorological zone, their algae density patterns varied inversely. The distinct algal cluster structure (diversity/dominance) of Paldang was altered in the downstream reservoir, suggesting that physical devices aid algae management in traditional water systems. In contrast, 24 out of 35 genera (63.2%) identified in the Jeolgol Reservoir (Baeknyeong Island) were unique, lacking regulatory mechanisms, and existing in a complex ecotone. The desmid Chlorophyceae Cosmarium, adapted to higher photosynthetic stress and low temperatures, dominated in January (38.04%) and August (86.45%) during the periods of extreme photosynthetic stress. Jeolgol's annual algal cluster structure (H' 2.097; D 0.259; S' 35) demonstrated higher stability than Paldang (H' 1.125; D 0.448; S' 13) and the Jamsil underwater reservoir (H' 1.078; D 0.469; S' 12), maintaining an H' above 1.5 even during midwinters. No evidence of TN/TP inflow from surrounding soils was observed, even during torrential rainfalls, with phosphorus being the limiting factor for algal growth. TOC, BOD, chlorophyll-a, and turbidity peaked during Cosmarium bloom. Future climate change is expected to cause fluctuations in algal clusters and related water quality factors. The complex transitional nature of the Jeolgol Reservoir, its algal diversity, and the interspecies interactions contribute to the high stability of its algal community.

Long Tenn Water Quality Prediction using an Eco-hydrodynamic Model in the Asan Bay (생태-유체역학모델을 이용한 아산만 해양수질의 장기 예측)

  • Kwoun, Chul-Hui;Kang, Hoon;Cho, Kwang-Woo;Maeng, Jun-Ho;Jang, Kyu-Sang;Lee, Seung-Yong;Seo, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The long-term water-quality change of Asan Bay by the influx of polluted disposal water was predicted through a simulation with an Eco-hydrodynamic model. Eco-hydrodynamic model is composed of a multi-level hydrodynamic model to simulate the water flow and an ecosystem model to simulate water quality. The water quality simulation revealed that the COD(Chemical Oxygen Demand), dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) are increased at 5 stations for the subsequent 6 months after the influx of the effluent. COD, DIN and DIP showed gradual decreases in concentration during the period of one to two years after the increase of last 6 months and reached steady state for next three to ten years. Concentration levels of COD, DIN, and DIP showed the increase by the ranges of $11{\sim}67%$, $10{\sim}67%$, and $0.5{\sim}7%$, respectively, which represents that the COD and DIN are the most prevalent pollutants among substances in the effluent through the sewage treatment plant. The current water quality of Asan Bay based on the observed COD, TN and TP concentrations ranks into the class II of the Korean standards for marine water quality but the water quality would deteriorate into class III in case that the disposal water by the sewage plant is discharged into the Bay.

  • PDF

Concentration Level and Grading of Water Quality Components (COD, DIN, DIP, Chlorophyll-a) in Korean Coastal Waters: A Statistical Approach (한국 연안역 수질성분들(COD, DIN, DIP, Chlorophyll-a)의 해역별 농도 특성과 등급화: 통계적 접근)

  • Lim, Dhong-Il;Choi, Hyun-Woo;Kim, Yong-Ok;Jung, Hoi-Soo;Kang, Youg-Shil
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • Comprehensive data collection was carried out between 2001-2006 to investigate the concentration levels of chlorophyll-a, nutrients (DIN and DIP), and COD for surface waters of Korean coastal areas. A statistical analysis of these parameters was carried out on the basis of the frequency distribution of their concentration. Furthermore, the numeric grading for chlorophyll-a, DIN, DIP, and COD concentrations were derived statistically from the normalized frequency distribution of log-transformed data. The statistical grading clearly reflects the water quality characteristics of three Korean coastal water bodies (Western, Southern and Eastern coastal zones), which indicate common environmental and ecological characteristics. So, this study could provide useful information to set up the guideline for water quality assessment of Korean coasts.