• Title/Summary/Keyword: Marine Sensor

Search Result 430, Processing Time 0.027 seconds

Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser (어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정)

  • Sohn, Kyung-Rak;Shim, June-Hwan;Yang, Gyu-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

Simulation for sensor network packet routing protocols based on distributed-event (분산이벤트 기반 센서네트워크 패킷 라우팅 프로토콜 시뮬레이션)

  • Chung, Kyung-Yul;Lim, Byung-Ju;Lee, Hoo-Rock;Rhyu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.418-424
    • /
    • 2013
  • Both simulation and physical implementation are valuable tasks in sensor network routing protocols. In this paper, we propose an efficient underground utilities monitoring method within several constraints using wireless sensor network. First, in order to physically implement protocol of network which is applied, the distributed event-based simulation, which applies an existing nesC codes of sensor network routing protocols, is implemented and analyzed. Also, we have performed the simulation and analyzed the execution results for application model of routing protocols for monitoring underground utilities in the VIPTOS(Visual Ptolemy and TinyOS) environments which combine TOSSIM and Ptolemy II based on distributed event.

A Study on Attitude Heading Reference System Based Micro Machined Electro Mechanical System for Small Military Unmanned Underwater Vehicle

  • Hwang, A-Rom;Yoon, Seon-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.522-526
    • /
    • 2015
  • Generally, underwater unmanned vehicle have adopted an inertial navigation system (INS), dead reckoning (DR), acoustic navigation and geophysical navigation techniques as the navigation method because GPS does not work in deep underwater environment. Even if the tactical inertial sensor can provide very detail measurement during long operation time, it is not suitable to use the tactical inertial sensor for small size and low cost UUV because the tactical inertial sensor is expensive and large. One alternative to INS is attitude heading reference system (AHRS) with the micro-machined electro mechanical system (MEMS) inertial sensor because of MEMS inertial sensor's small size and low power requirement. A cost effective and small size attitude heading reference system (AHRS) which incorporates measurements from 3-axis micro-machined electro mechanical system (MEMS) gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for UUV. The AHRS based MEMS overcome many problems that have inhibited the adoption of inertial system for small UUV such as cost, size and power consumption. Several evaluation experiments were carried out for the validation of the developed AHRS's function and these experiments results are presented. Experiments results prove the fact that the developed MEMS AHRS satisfied the required specification.

Localization Scheme with Mobile Beacons in Ocean Sensor Networks (모바일 비콘을 이용한 해양 센서 네트워크의 위치 파악 기법)

  • Lee, Sang-Ho;Kim, Eun-Chan;Kim, Chung-San;Kim, Ki-Seon;Choi, Yeong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1128-1134
    • /
    • 2007
  • Recently, sensor network technology is a highly concerned area due to the expectation of many applications in various fields. The application of sensor network technology to the marine and ocean surveillance and investigation makes the marine environmental research easier since intelligent sensor nodes substitute the human labor work. In ocean sensor network, the localization scheme for the sensor nodes is most essential because all the information without from sensor nodes might be useless unless the positional information of each sensor nodes is provided. In this paper, the localization scheme with mobile beacons in ocean sensor networks is suggested and showed it could be effective for applying to marine circumstances. Even though the previous localization scheme(Ssu's) has advantages that additional hardware is not required for obtaining the information of distance and angle and shows the high accuracy of location and energy efficiency and easy expandability as well, it has also demerits the location error increases as the minimum distance between the absolute positional information become closer. In our works, the improved localization scheme with the presumed area of sensor node using geometric constraints is suggested.

  • PDF

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

Relative azimuth estimation algorithm using rotational displacement

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • Recently, indoor localization systems based on wireless sensor networks have received a great deal of attention because they help achieve high accuracy in position determination by using various algorithms. In order to minimize the error in the estimated azimuth that can occur owing to sensor drift and recursive calculation in these algorithms, we propose a novel relative azimuth estimation algorithm. The advantages of the proposed technique in an indoor environment are that an improved weight average filter is used to effectively reduce impulse noise from the raw data acquired from nodes with inherent errors and a rotational displacement algorithm is applied to obtain a precise relative azimuth without using additional sensors, which can be affected by electromagnetic noise. Results from simulations show that the proposed filter reduces the impulse noise, and the acquired estimation error does not accumulate with time by using proposed algorithm.

A Study on the Automatic Seam Tracking of Triangular Wave Form (삼각파 형태의 용접선 자동추적에 관한 연구)

  • Bae Cherl-O;Kim Hyun-Su;Ahn Byong-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.151-155
    • /
    • 2006
  • In these days, welding is the most commonly used metallic connection technology and also is the fundamental production technology of the modem industrial, which is used in various areas of the industrial fields, such as shipbuilding, automobiles, airplanes and plant facilities. However welding process produces strong light, electric currents, and fume gases etc., and the welding automation is not so easy compared to the other works of manufacturing industries which produce the standardized products in large quantities. So it is difficult to weld and detect the all kinds of seams automatically by a specific sensor. In this paper the sensor applying strain gauges is used to detect the seams of triangular wave form. With the auto carriage having the sensor we proposed the experiment to weld and track the seam automatically.

  • PDF

Synthesis of Au Nanoparticles Functionalized 1D α-MoO3 Nanobelts and Their Gas Sensing Properties

  • Wang, Liwei;Wang, Shaopeng;Fu, Hao;Wang, Yinghui;Yu, Kefu
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850115.1-1850115.10
    • /
    • 2018
  • A novel sensor material of Au nanoparticles (NPs) functionalized 1D ${\alpha}-MoO_3$ nanobelts (NBs) was fabricated by a facile lysine-assisted approach. The obtained $Au/{\alpha}-MoO_3$ product was characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX), and X-ray photoelectron spectra (XPS). Then, in order to investigate the gas sensing performances of our samples, a comparative gas sensing study was carried out on both the ${\alpha}-MoO_3$ NBs before and after Au NPs decoration by using ethanol vapor as the molecular probe. The results turned out that, after the functionalization of Au NPs, the sensor exhibited improved gas-sensing characteristics than the pure ${\alpha}-MoO_3$, such as response and recovery time, optimal operating temperature (OT) and excellent selectivity. Take for example 200 ppm of ethanol, the response/recovery times were 34 s/43 s and 5.7 s/10.5 s, respectively, while the optimal operating temperature (OT) was lower to $200^{\circ}C$ rather than $250^{\circ}C$. Besides, the functionalized sensor showed a higher response to ethanol at $200^{\circ}C$, and response was 1.6 times higher than the pure $MoO_3$. The mechanism of such improved sensing properties was interpreted, which might be attributed to the spillover effect of Au NPs and the electronic metal-support interaction.

Health Monitoring of Livestock using Neck Sensor based on Machine Learning (목걸이형 센서를 이용한 머신러닝 기반 가축상태 모니터링)

  • Lee, Woongsup;Park, Seongmin;Ban, Tae-Won;Kim, Seong Hwan;Ryu, Jongyeol;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1421-1427
    • /
    • 2018
  • Due to the rapid development of Internet-of-Things technology, different types of smart sensors are now devised and deployed widely. These smart sensors are now used in animal husbandry which was traditionally managed by the experience of farmers, such that wearable sensors for livestock, and the smart farm which is equipped with multiple sensors are utilized to increase the efficiency of livestock management. Herein, we consider a scheme in which the body temperature and the level of activity are measured by smart sensor which is attached to the neck of dairy cattle and the health condition is monitored based on collected data. Especially, we find that the estrous of dairy cattle which is one of most important metric in milk production, can be predicted with high precision using various machine learning techniques. By utilizing the proposed prediction scheme, estrous of cattle can be detected immediately and this can improve the efficiency of cattle management.

SIMP: SLICKS AS INDICATORS FOR MARINE PROCESSES

  • Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.950-953
    • /
    • 2006
  • SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data.

  • PDF