• Title/Summary/Keyword: Marine Robot

Search Result 148, Processing Time 0.021 seconds

Development of Multi-pass Welding Method for Lifting Lug by Robot Weaving (로봇 위빙에 의한 리프팅 러그 다층 용접법 개발)

  • Kim, Young-Zoo;Kim, Kang-Uk;Kim, Suk-Hyoung;Kang, Sung-Won;Kim, Soo-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.44-52
    • /
    • 2007
  • A welding process of a lifting lug for lifting heavy objects is one of the important welding processes directly related to the safety in shipbuilding. Welding a lifting lug is done in the manually and takes about forty minutes. Working environment for the lifting lug welding is very poor due to an radiant heat and a harmful fume. The purpose of this study is to develop methods of multi-pass welding using the lifting lug welding robot system. This study shows robot welding methods to achieve proper corner, straight and connection welding and an effectiveness of application.

Analysis of Metacognition Interaction based on Robot lesson (로봇활용수업에서의 초인지적 상호작용 분석연구)

  • Kim, Gyung-Hyun;Lee, Ju-Hyuk;Kim, Du-Gyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.430-440
    • /
    • 2015
  • The purpose of this study was to analyze student's metacognition interaction based on a robot lesson. For this research as an analytical metacognition interaction tool was utilized. The results of this study revealed that, first, elementary school students had more metacognition interaction in middle learning levels but middle school students had more in the low learning level. Second, in the low learning level, middle school students revised the initiated goal strategy of the robot lesson. Third, in all learning levels, students showed much diagnosis and assesment metacognition interaction in the robot lesson. According to this study's results, the robot lesson has a positive effect in facilitating diagnosis meta cognition for processing of task performance. These results could provide effective cues and information on how to improve the robot lesson.

Development of a New Robot Manipulator Driven by the Closed-chain Actuator (폐체인 구조의 새로운 다관절 로봇 매니퓰레이터 개발)

  • 최형식;백창열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.238-245
    • /
    • 2003
  • To overcome the weakness in the load capacity of conventional robot manipulators actuated by motors with the speed reducer such as the harmonic driver, we proposed a new closed-chain type of the robot actuator which is composed of the four-bar-link mechanism driven by the ball screw. The robot manipulator is revolute-jointed and composed of four axes. The base axis is actuated by the lineal actuator such as the ball screw, and the others are actuated by the proposed actuator. We analyzed the mechanism of the actuators of the robot joints, and developed the dynamics model. The dynamics are expressed in the joint coordinates and then they are mapped into the sliding coordinates of the ball screw. We performed fundamental tests on the structure of the robot.

Any-angle Path Planning Algorithm considering Angular Constraint for Marine Robot (해양 로봇의 회전 반경을 고려한 경로 계획 알고리즘)

  • Kim, Han-Guen;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.365-370
    • /
    • 2012
  • Most path planning algorithms for a marine robot in the ocean environment have been developed without considering the robot's heading angle. As a result, the robot has a difficulty in following the path correctly. In this paper, we propose a limit-cycle circle set that applies to the $Theta^*$ algorithm. The minimum turning radius of a marine robot is calculated using a limit-cycle circle set, and circles of this radius is used to generate a configuration space of an occupancy grid map. After applying $Theta^*$ to this configuration space, the limit-cycle circle set is also applied to the start and end nodes to find the appropriate path with specified heading angles. The benefit of this algorithm is its fast computation time compared to other 3-D ($x,y,{\theta}$) path planning algorithms, along with the fact that it can be applied to the 3-D kinematic state of the robot. We simulate the proposed algorithm and compare it with 3-D $A^*$ and 3-D $A^*$ with post smoothing algorithms.

Design of Ultra-light Robot-arm Capable of Carrying Heavy Weight (고중량 이송 가능한 초경량 로봇 팔의 설계)

  • Choi, Hyeung-Sik;Cho, Jong-Rae;Leem, Kun-Wha;Lee, Jong-Hoon;Kim, Young-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.343-350
    • /
    • 2008
  • In this paper, a six degree-of-freedom robot arm which is very light but capable of delivering heavy loads was studied. The proposed robot arm has much higher load capacity than conventional robot arms actuated by motors with speed reducers such as the harmonic drive since a new type of robot actuator based on a closed chain mechanism driven by the ball screw was adopted. Analysis on the design scheme and on the mechanism of the joint actuator of the robot arm were made. Since the robot arm was designed very light, it has deflection in the links. To analyze this, a finite element analysis on the structure of the designed robot links was made using ANSYS software. Verifying experiments on the performance of high load capacity of the robot arm was performed by loading heavy weights on the robot arm. Through experiments. the correctness of the numerical analysis was also verified.

A Study on a Gravity Compensator for the Robot Arm (로봇팔을 위한 중력보상기 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Her, Jea-Gwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

Development of Embedded Servo System for The Mobile Robot (모바일 로봇을 위한 임베디드 서보 시스템 구현)

  • Lee, Young-Seok;Lee, Sang-Hoey;Kim, Won-Bae;Lee, Seung-Ho;Kim, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2035-2036
    • /
    • 2006
  • Most industrial robot have not load control box because of robot's weight and volume. A robot is connected to its control box by cables. and then there are a lot of problem for transfer, management and operation of robot. Now a day, A lot of control module are made small size by development of electronics part technology and control technology and they are developing as embedded and loading system. For that, control module and its servo system for a mobile robot is developed. they are small size in comparison with conventional products.

  • PDF

Development of a Real Time System for The Vertical Mobile Robot (수직면 부착이동 로봇을 위한 실시간 시스템 구현)

  • Lee, Sang-Hoey;Yang, Suk-Won;Kim, Won-Bae;Park, Ju-Yi;Kim, Soo-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1991-1992
    • /
    • 2006
  • this paper is described the Vortical Mobile Robot problem which can be generated a lot of error like gravity, mobile error between main control system of robot and application program and solution which is installed RTX( Real Time Extension ) Kernel to Embedded XP of main control board because it needs to guarantee real time between the main control board of robot and the motion drive board and to develop the remote operation system for real time robot control also in case The Vertical Mobile Robot that needs fast and stable motile control so it is proposed a guaranteed real time system

  • PDF

Design of a New Flexible In-pipe Inspection Robot (새로운 구조의 유연한 배관탐사 로봇 설계)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Kim, Dong-Hyun;Lee, Jong-Hoon;Whang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • In this paper, a new in-pipe inspection robot was developed for inspecting a large number of circular pipe insides of the sea plant, ships, and buildings. A new pressure generation system was devised to inspect circular pipes with different diameters and to move up and down slant or perpendicular slopes inside of the pipe. Also, a design method was analyzed to decide the capacity of driving motor for the robot if the mass and maximum velocity of the robot are identified. According to the design specification, a robot was developed and was tested to verify the performance of the pressure generation system. For tests, a control system was developed.

Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning (선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발)

  • Choi, Hyeung-Sik;Kwon, Kyoung-Youb;Chung, Koo-Rack;Seo, Joo-No;Kang, Hyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.