• Title/Summary/Keyword: Marine Robot

Search Result 148, Processing Time 0.021 seconds

Modal Analysis of Rotating Beam Structures Having Complex Configurations Employing Multi-Reference Frames

  • Kim, Jung-Min;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.66-75
    • /
    • 2006
  • A modeling method for the modal analysis of rotating beam structures having complex configurations employing multi-reference frames is presented in the present study. In most structural analysis methods, single reference frame is employed for the modal analysis. For simple structures such as single beam or single plate, the method of employing single reference frame usually provides rapidly converging accurate results. However, for general structures having complex configurations, such a method provides slowly converging, and often erroneous, results. In the present study, the effects of employing multi-reference frames on the convergence and the accuracy of the modal analysis of rotating beam structures having complex configurations are investigated.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.

Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster (회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현)

  • Shin, Dong H.;Bae, Seol B.;Joo, Moon G.;Baek, Woon-Kyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

Marine rescue robot responds to harbor worker's fall at sea (항만 근로자의 해상 추락사고에 대응하는 해상 구조 로봇)

  • Hee-Sang Hwang;Min-Cheol Kang;Wook-Hyun Jung;Jin-Won Jung;In-Soo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1076-1077
    • /
    • 2023
  • 해상 추락사고에 대응하는 해상 구조 로봇 프로젝트는 항만 근로자의 추락사고 감지와 피해자 구조에 초점을 둔다. 센서와 자율주행 기술을 접목하여 정확하고 효율적인 구조 작업을 가능케 하고, 자체 개발한 워터센서를 활용하여 신속한 구조를 지원한다. YOLO를 이용한 피해자 위치 파악, 블루투스 기반 관리자 어플리케이션, 해상 추락 감지 및 센서를 탑재한 구명 조끼, 자동 구조 작업 등의 기능을 통합하여 항만 근로자의 안전을 보장하며, 해수욕장 등 다양한 환경에서도 확장 가능한 창의적인 기술을 제시한다.

A Study on the Technology Analysis of Marine Unmanned System for Determination of Core Technology Requirements (핵심기술 소요결정을 위한 해양 무인체계 요구기술 분석 연구)

  • Won, You-Jae;Eom, Jin-Wook;Park, Chan-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.350-361
    • /
    • 2019
  • The fourth industrial revolution based on the intelligent revolution has revolutionized the society as a whole, and it has also affected the defense sector. Various aspects of the war have been changing with the development of technology. In particular, various strategies such as research and development of core technology related to defense unmanned system field and infrastructure are being established based on the fourth industrial revolution technology. In this paper, we have conducted a study to select the technology required for maritime unmanned systems, which can be considered as a priority consideration for the future development of the core technology to be secured prior to the development of the weapon system. First, the core technology prioritization model for the marine unmanned system was established, and the technology fields of the unmanned robot were reclassified and integrated in the related literature such as the classification of the defense technology standard. For the empirical analysis, a questionnaire survey was conducted for 12 specialists who are engaged in the planning of weapons systems, and the importance of technical fields that require development in the development of marine unmanned systems was analyzed. As a result, it was possible to identify the key technology areas that should be considered in selecting the key technologies proposed by the military groups, research institutes, and companies. This could contribute to the establishment of the technology roadmap to develop the marine unmanned system from the future point of view.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

Stability Analysis of Piezoelectric Module and Determine of Optimal Burying Location (압전발전 모듈의 안정성 해석 및 최적 매립위치 결정)

  • In-Soo Son;Ji-Won Kim;Hong-Hoi Joo;Dae-Hwan Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.193-199
    • /
    • 2023
  • In this study, an analysis was conducted to analyze the structural stability of the piezoelectric power generation module and to determine the optimal burying hole interval for concrete, the installation site of the power generation module. A piezoelectric element refers to a functional ceramic having a piezoelectric direct effect that converts mechanical energy into electrical energy and a piezoelectric reverse effect. In the analysis of the piezoelectric power generation module, the load condition was applied with about 16 tons and a total of 10 wheels in consideration of the container trailer. The purpose was to evaluate the stability of major components of the piezoelectric power generation module through finite element analysis. In order to determine the optimal burying location of the concrete ground for burying the piezoelectric power generation module, the stability of the ground structure according to the distance of the holes was determined. As a result of the analysis, the maximum stress of the piezoelectric power generation module was generated in the support spring, showing a stress of about 276.7 MPa. It was found that the spacing of holes for embedding the piezoelectric power generation module should be set to a minimum of 100 mm or more.

Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter (듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발)

  • Seung, Ji-Hoon;Lee, Deok-Jin;Ryu, Ji-Hyoung;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.