• Title/Summary/Keyword: Marine Isotope Stage 7

Search Result 8, Processing Time 0.028 seconds

The Geomorphic Development of River Terraces along the Middle and the Lower Parts of the Osip-cheon River in Samchok City (三陟 五十川 중.하류부의 河岸段丘 지형발달)

  • 윤순옥;황상일;정석교
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.3
    • /
    • pp.222-236
    • /
    • 2002
  • The Osip-cheon river flowing on the east side of the Taeback mts. has formed river terraces on the several heights along the middle- and downstream. The river terraces are classified into 5 climatic ones and 7 thalassostatic ones. The thalassostatic ones are found to the height of 145-l50m level at 20-30m intervals. These vertical distribution is caused by the continuous uplift and periodical rise and fall of the sea-level. The high higher surfaces among the thalassostatic ones are the highest among those of Korea. The chronologies of the terraces are correlated to the marine oxygen isotope stages : The thalassostatic terraces on the level of 40 m.a.s.l. are to the stage 7, 70 m.a.s.l.. to the stage 9, 90 m.a.s.l. to the stage 9, 110 m.a.s.1. to the stage 11 and those of 150 m.a.s.1. to the stage 15 among the Interglacial Ages. The landuses and geomorphic landscapes of the Samchok area are chracteristic, because the karst landforms, such as doline and uvala, are developed on the surfaces of the middle-, the higher- and the high higher surfaces of river terrace.

Tephrostratigraphy and Paleoenvironments of Marine Core in the Kita-Yamato Trough, East Sea/Japan Sea (동해 키타-야마토 해곡에서 채취된 시추코아의 테프라층서와 고환경)

  • Chun Jong-Hwa;Cheong Daekyo;Han Sang-Joon;Huh Sik;Yoo Hai-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.83-93
    • /
    • 2006
  • The Kita-Yamato Trough is characterized by a SW-NE trending narrow graben between the Yamato Bank and the Kita-Yamato Bank in the central East Sea/Japan Sea (ES/JS). Core 20EEZ-1 was obtained in the flat summit of a small ridge from the southwest Kita-Yamato Trough. The sedimentation was mainly controlled by the supply of hemipelgic sediments and substantial tephras from explosive volcanic eruptions of the Quaternary volcanoes. The aim of this study is to reconstruct the tephrostratigraphy from the marine sediments collected from the Kita-Yamato Trough and to provide the atmosphere and ocean conditions during the explosive volcanic eruptions. According to the detailed tephrostratigraphy and lithofacies records, the core sediments were deposited during the last marine isotope stage (MIS) 7. The core consists of four lithofacies, idetified as, oxidized mud (OM), crudely laminated mud (CLM) and bioturbated mud (BM), interbedded with coarse-grained tephra (TP). The major element geochemistry and stratigraphic positions of seven tephra layers suggest that they originated from the Aira caldera in Kyushu area among the Japanese islands (AT tephra; 29.24 ka), unknown submarine volcano in the south Korea Plateau (SKP-I; MIS 3, SKP-II; MIS 4, SKP-IV; boundary between MIS 6 and MIS 5e, SKP-V; MIS 6, respectively), and the Baegdusan volcano in the Korean Peninsula (B-KY1; ca. 130 ka, B-KY2; ca. 196 ka). The absence of tephras originated trom Ulleung Island in core 20EEZ-l suggest that the tephras had not been transported into the Kita-Yamato Trough by atmosphere conditions during the eruptions. On the other hand, the B-KYI and the B-KY2 tephras derived from the Baegdusan volcano were founded in the Kita-Yamato Trough by a presence of prevailing westerly winds during the eruptions. Furthermore, the SKP tephras were characterized by the transport across the air-water interface, causing quickly thrust of raising eruption plumes from subaqueous explosive eruptions. Surface currents may play an important role in controlling the distribution patterns of the SKP tephras to distal areas. The tephrostratigraphic study in the Kita-Yamato Trough provides the important chronostratigraphic marker horizons and the detailed atmosphere and ocean conditions during the explosive eruptions.

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF

Properties of Deposits and Geomorphic Formative Ages on Marine Terraces in Gwangyang Bay, South Sea of Korea (광양만 일대 해안단구의 퇴적물 특성과 지형 형성시기)

  • Lee Gwang-Ryul;Park Chung-Sun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.3 s.114
    • /
    • pp.346-360
    • /
    • 2006
  • In order to analyze synthetically geomorphological processes of marine terrace in Korea, this study deals with the distribution of marine terraces, stratification of sedimentary layers, physicochemical properties of deposits, and formative ages of marine terraces based on OSL(Optically Stimulated Luminescence) absolute age at coastal area of Gwangyang Bay in central part of the South Coast. As a result of comparison with physicochemical properties on diverse geomorphic materials, there is not enough distinction in them, because of recycling and mixing of materials at Gwangyang Bay having a geomorphic closure. In Gwangyang bay coast, marine terraces are discovered at least 3 levels and have a small area. Formative age of 1st Terrace, as the lowest level ranging in $10{\sim}13m$ above the sea level, is estimated at MIS(Marine Isotope Oxygen Stage) 5a, based on OSL age dating and properties of deposits. Uplifting rate is calculated at 0.141m/ka in Gwangyang bay coast. For application to this rate, 2nd terrace($18{\sim}22m$) is estimated at MIS 5e, 3rd terrace($27{\sim}32m$) is latter part of MIS 7. Consequently, we might conclude that uplifting and geomorphic process of marine terrace in South Coast is similar to East Coast during the Late Pleistocene in Korea.

Variations of Biogenic Components in the Region off the Lutzow-Holm Bay, East Antarctica during the Last 700 Kyr (지난 70만 년 동안 동남극 Lutzow-Holm만 주변 해역의 생물기원 퇴적물 함량 변화)

  • Kim, Yeo-Hun;Katsuki, Kota;Suganuma, Yusuke;Ikehara, Minoru;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.211-221
    • /
    • 2011
  • Contents of biogenic components [opal, $CaCO_3$, TOC (total organic carbon)] were measured in Core LHB-3PC sediments collected off Lutzow-Holm Bay, in order to understand glacial-interglacial cyclic variation of the high-latitude surface-water paleoproductivity, in the Indian Sector of the Southern Ocean. An age model was established from the correlation of ARM/IRM ratios of Core LHB-3PC with LR04 stack benthic ${\delta}^{18}O$ records, in complement with radiocarbon isotope ages and biostratigraphic Last Appearance Datum (LAD). The core-bottom age was estimated to be about 700 ka. Although the $CaCO_3$ content is very low less than 1.0% throughout the core, the opal and TOC contents show clear glacial-interglacial cyclic variation such that they are high during the interglacial periods (7.2-50.3% and 0.05-1.00%, respectively) and low during the glacial periods (5.2-25.2% and 0.01-0.68%, respectively). According to the spectral analysis, the variation of opal content is controlled mainly by eccentricity forcing and subsequently by obliquity forcing during the last 700 kyrs. The opal contents of Core LHB-3PC also represent the apparent Mid-Pleistocene Transition (MPT)-related climatic variation in the glacial-interglacial cycles. In particular, the orbital variation of the opal contents shows increasing amplitudes since marine isotope stage (MIS) 11, which defines one of the important paleoclimatic events during the late Quaternary, called the "Mid-Brunhes Event". Based on the variation of the opal contents in Core LHB-3PC, we suggest that the surface-water paleoproductivity in the Indian Sector of the Southern Ocean followed the orbital (glacial-interglacial) cycles, and was controlled mainly by the extent of sea ice distribution during the last 700 kyrs.

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

Marine Terrace of Daebo-Guryongpo-Gampo, SE Korea(II) (대보-구룡포-감포 지역의 해안단구(II))

  • 최성자
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The 36km-long Daebo-Campo coast has a well-developed marine terraces divided to six steps by elevation of paleoshoreline : 0.5 m(T1), 10 m(T2), 30 m(T3), 40 m(T4), 60 m(T5) and 75 m(T6). The 2$^{nd}$ and 3$^{nd}$ platforms in Daebo to Guryongpo are wider and more distinctive than those of Guryongpo to Gampo. The 3$^{nd}$ terrace of 30 m high is subdivided to two flights as lower(T3b) and upper(T3a) by old sea cliff. Platform age is unclear because of coral fossil free. However, the terrace age could be determined with convergent OSL ages from beach sediments on 2$^{nd}$ step(T2). OSL ages of the terrace of 10 m high range in 60-70 ka. It reveals that the 2$^{nd}$ -step platform correlates to Oxygen Isotope Time scale, substage 5a(ca. 80 ka), and that uplift rate is ca. 0.19 m/ka for 2$^{nd}$ terrace at Daebo-Campo coast. If considering equivalent uplift rate for all terraces since the Late Pleistocene, the 3$^{rd}$ and 4$^{th}$ terraces would be 5e substage and 7 stage. The 30 m-high terrace provides a good indicator for uplift at Daebo-Gampo coast since 125,000 yrs(MIS 5e). It suggests that the local neotectonic deformation might cause an optional uplift rate of ca. 0.19 m/ka along the SE coast of Korea.

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.