• Title/Summary/Keyword: Marine Ecotoxicity

Search Result 27, Processing Time 0.023 seconds

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

Comparative Study on the Characteristics of Microalgae as Standard Species for Marine Ecotoxicity Tests (Skeletonema sp., Dunaliella tertiolecta) (해양생태독성시험 표준생물로서 미세조류의 특성 비교 연구(Skeletonema sp., Dunaliella tertiolecta))

  • Kim, Tae Won;Moon, Chang Ho;Lee, Su Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.514-522
    • /
    • 2020
  • To understand the ecotoxicological differences between representative Skeletonema sp. and Dunaliella tertiolecta, both producers as international standard test species for marine ecotoxicity testing, we compared each standard test method, and comparatively analyzed the suitability of the species for environmental assessment and their sensitivity to various test substances. Although most of the test conditions were the same in each method, there were differences in limitation of pH changing and the initial inoculation density in the validation criteria, which is supposed to originate from the low growth rate of D. tertiolecta. In terms of suitability, both species showed consistency in test performance by repeatedly meeting the validation criteria required by the standard test methods. The salinity ranges available for testing were 20 and 10 psu for Skeletonema sp. and D. tertioelecta, respectively. Finally, regarding sensitivity, the toxicity sensitivity of Skeletonema sp. was relatively higher than that of D. tertiolecta for the reference toxicant, actual polluted water discharged (ballast water), and other chemicals. This implies that using at least two species of microalgae from different classification groups could help increase the reliability and objectivity of test results in the performance of marine ecotoxicity tests using producers.

Effects of Cadmium, Copper, Chromium, Nickel, Silver, and Zinc on the Embryonic Development of the Sea Urchin, Strongylocentrotus intermedius (북쪽말똥성게 (Strongylocentrotus intermedius) 배아 (embryo)를 이용한 중금속에 대한 민감도 비교)

  • Ryu, Tae-Kwon;Hwang, In-Young;Lee, Taek-Kyun;Yoon, Jun-Heon;Lee, Chang-Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • Discharged materials from the point or non-point source are released into the sea, and as the results, marine environment is directly affected. We must estimate the impacts of contaminants to marine pollution rapidly and accurately. Therefore, it is needed on early warning system for appreciating marine environmental impacts, and required a bioassay to evaluate abnormal changes. A bioassay test was developed to examine the effects of heavy metal contaminants on the early life stages of the marine annimals. We have studied the effects of metals on early development of a sea urchin species, Strongylocentrotus intermedius. S. intermedius embryos were tested with six metals (Cu, Ag, Zn, Cd, Cr, Ni) and showed the highest sensitivity to Cu as well as the lowest sensitivity to Cd. The order of biological impact for metals was Cu>Ag>Ni>Zn>Cr>Cd. In accordance with the results, sea urchins embryos can provide biological criteria for seawater quality assessment. The sensitivity of developmental bioassay whith S. intermedius is at intermediate level among marine organisms commonly used in aquatic bioassays. And this sea urchin can be routinely employed as a test organism for ecotoxicity assays.

Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay (PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가)

  • Bak, Jeong-Ah;Hwang, In-Young;Baek, Seung-Hong;Kim, Young-Sug
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.

Environmental Impacts Assessment of the Wheat Flour Production Process Using the Life Cycle Assessment Method (LCA 기법을 이용한 소맥분 생산 공정의 환경 영향 평가)

  • Chu, Duk-Sung;Kwon, Hyuk-Ku;Kim, Jong-Geu;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • The life cycle assessment method for environmental impact assessment was used, in this study, to assess the production process of wheat flour which is the most important material in the food industry. Environmental impact assessments were compared between that of the Ministry of Environment, Republic of Korea (method I) with that of the Ministry of Commerce, Industry and Energy (method II). Life cycle inventories (LCI) was performed using internal and external databases and the production statistics database of company S. The procedure of life cycle impact assessment (LCIA) was followed in terms of classification, characterization, normalization and weighting to identify the key issues. The impact categories of method I were divided into 8 categories with consideration of : abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification and eutrophication. The impact categories of method II were divided into 10 categories with consideration of: abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification, eutrophication, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity.

Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo;Chung, Chang-Soo;Lee, Sang-Hee;Hong, Gi-Hoon;Kirn, Suk-Hyun;Park, Soung-Yun;Yoon, Seong-Jin;Lee!, Seung-Min
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2005
  • Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

Potential of Marine Ciliate Mesodinium rubrum as a Standard Test Species for Marine Ecotoxicological Study (해양생태독성 평가용 표준시험생물로서 섬모충류 Mesodinium rubrum에 대한 연구)

  • An, Kyoung-Ho;Park, Gyung-Soo;Lee, Seung-Min
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1087-1093
    • /
    • 2011
  • The mixotrophic marine ciliate Mesodinium rubrum possesses a highly modified algal endosymbiont as a nutrition source for the species. Accordingly, we assumed that the species can reflect the ecotoxicity on marine producer (as phytoplankton) and consumer (as zooplankton) both. A series of experiments were conducted to identify the potential of the species as a standard test species for marine ecotoxicological study. The comparison of species sensitivity on reference toxic materials was made using potassium dichromate for phytoplankton and copper chloride for zooplankton. The ciliate revealed the highest sensitivity on both reference materials among the seven test species including phytoplankton, benthic copepod and rotifer species. The toxicity end point of the species was 72hr-$EC_{50}$=1.52 mg/L (as potassium dichromate) estimated by population growth inhibition (PGI), which is more sensitive than the most sensitive phytoplankton Skeletonema costatum (72hr-$EC_{50}$=3.05 mg/L). As comparison to rotifer, it also revealed higher sensitivity on copper chloride; 72hr-$EC_{50}$=0.38 mg/L for ciliate and 48hr-$EC_{50}$=0.48 mg/L for rotifer. Also, the elutriate toxicity test of various ocean disposal wastes were conducted to identify the potential of ciliate toxicity test application using industrial waste sludges. The toxicity of leather processing waste sludge was highest on the ciliate, followed by dyeing waste sludge and dye production waste sludge as an increasing order of toxicity. 72h-$EC_{50}$ of ciliate PGI test was 1.83% and that of S. costatum 3.84% for leather waste sludge which showed highest toxicity. The toxicity test results also revealed that the highest sensitivity was observed on ciliate species on ocean disposed sludge wastes. Also, ciliate toxicity test well discriminated the degree of toxicity between sludge sources; 72h-$EC_{50}$ values were 1.83% for leather processing waste sludge, 16.75% for dye production waste sludge and 27.75% for textile production waste sludge. Even the laboratory culture methods of the species were not generally established yet, the species has high potential as the standard test species for marine toxicity test in terms of the dual reflection of phyto- and zooplankton toxicity from single test, sensitivity and test replicability.

Effect of Wastewater from the in-water Cleaning Process of Ship Hull on Marine Organisms - A Review

  • Jae-Sung Rhee;Seong Hee Mun;Jee-Hyun Jung
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Over the past decade, there has been global expansion in the advancement of underwater cleaning technology for ship hulls. This methodology ensures both diver safety and operational efficiency. However, recent attention has been drawn to the harmful effects of ship hull-cleaning wastewater on marine animals. It is anticipated that this wastewater may have various impacts on a wide range of organisms, potentially leading to populationand ecosystem-relevant alterations. This concern is especially significant when the wastewater affects functionally important species, such as aquaculture animals and habitat-forming species living in coastal regions, where underwater cleaning platforms are commonly established. Despite this, information on the ecotoxicological effects of this wastewater remains limited. In this mini review, we discuss the adverse effects of wastewater from in-water cleaning processes, as well as the current challenges and limitations in regulating and mitigating its potential toxicity. Overall, recent findings underscore the detrimental effects posed by sublethal levels of wastewater to the health status of aquatic animals under both acute and chronic exposure.

Life Cycle Assessment on the Interior Panel of Electric Motor Unit (EMU) (전동차 내장판넬에 대한 전과정평가 연구)

  • Lee, Jae-Young;Choi, Yo-Han;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.517-523
    • /
    • 2006
  • The sustainable development is a key issue in the whole field of economy, culture and society, which can be accomplished by the improvement of environment. Recently, life cycle assessment(LCA) has been applied to reduce environmental impacts preliminarily by evaluating the environmental performance of a product through its life cycle. In this study, life cycle assessment was performed to analyze quantitatively the environmental impact on the interior panel of electric motor unit(EMU). As a result, the interior panel with aluminum showed the most global warming(GW), while that with phenol and plastic showed high fresh water aquatic ecotoxicity(FAET) and marine water aquatic ecotoxicity(MAET), respectively. Global warming was occurred mainly due to the emission of $CO_2$ by energy consumption. FAET and MAET were caused by the pollutants released from acid-washing and paints coating process. Therefore, an environmental-friendly EMU can be designed considering the environmental impacts of interior panel.

A Study on the Characteristics of Environmental Impact with the Seat Material of Electric Motor Unit (EMU) (전동차 의자의 재질에 따른 환경부하 특성에 관한 연구)

  • Lee, Jae-Young;Kim, Bo-Kyong;Chun, Yoon-Young;Kim, Yong-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.524-531
    • /
    • 2006
  • Environmental problem is one of important global issues. Transportations are main pollutant emission sources. Although railroad is stilt an environmental-friendly transportation, its environmental impact has been increased continuously. Especially, because a large amount of environmental impact is released from vehicles and facilities, it is necessary to assess and to reduce their environmental impact. Life cycle assessment (LCA) is a representative method which can evaluate environment impact through the whole life cycle of a product or a process. In this study, the environmental impact of seat in the electric motor unit (EMU) was analyzed quantitatively with its material using lift cycle assessment (LCA). As a result, the characteristics of environmental impact were investigated differently with the material of seat. Among ten impact categories, the seat with aluminum and FRP showed the highest ozone depletion (OD). On the other hand, in the seat with stainless steel and plastic, fresh water aquatic ecotoxicity (FAET) and marine water aquatic ecotoxicity (MAET) were high relatively. Therefore, the parts of EMU must be selected considering the characteristics of environmental impact in future.