• Title/Summary/Keyword: Marine Ecosystem Management

Search Result 184, Processing Time 0.027 seconds

A study on the ecosystem-based fisheries assessment by quality analysis in Jeonnam marine ranching ecosystem (정량적 분석에 의한 전남바다목장의 생태계 기반 어업평가)

  • Park, Hee Won;Choi, Kwang Ho;Zhang, Chang Ik;Seo, Young Il;Kim, Heeyong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.459-468
    • /
    • 2013
  • In the application of the ecosystem-based fisheries assessment Jeonnam marine ranching ecosystem, two fisheries, funnel fishery and trap fishery, were selected as target fisheries. Black seabream, Acanthopagru schlegelii, rock bream, Sebastes inermis, gray mullet, Mugil cephalus, were selected as target species for the funnel fishery, and conger eel, Conger myriaster, was target species for the trap fishery. For assessing indicators of four management objectives, that is the maintenance of sustainability, biodiversity, habitat quality and socio-economic benefits, indicators were selected considering the availability of data, which were 5 indicators for sustainability, 3 indicators for biodiversity, 4 indicators for habitat, 2 indicators for socio-economic benefit. The Objective risk indices for sustainability and biodiversity of two fisheries were estimated at yellow zone, medium risk level. The objective risk indices for habitat and socio-economic benefit were estimated at green zone, safe level. The species risk indices (SRI) were estimated at yellow zone. The fishery risk indices (FRIs) were estimated at 1.143 and 1.400 for funnel net fishery and trap fishery, respectively. Finally the ecosystem risk index estimated at 1.184.

A Numerical Simulation of Marine Water Quality in Ulsan Bay using an Ecosystem Model (생태계모델을 이용한 울산만의 수질 시뮬레이션)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.313-322
    • /
    • 1998
  • The distributions of chemical oxygen demand (COD) and suspended solid (SS) in Ulsan Bay were simulated and reproduced by a numerical ecosystem model for the practical application to the management of marine water quality and the prediction of water quality change due to coastal developments or the constructions of breakwater and marine facilities. Comparing the computed with the observed data of COD and SS in Ulsan bay the results of simulation were found to be good enough to satisfy the practical applications.

  • PDF

Coral Reefs in Indonesia: A Review on Anthropogenic and Natural Disturbances

  • Meinita, Maria Dyah Nur
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Coral reefs are among the most dynamic and various ecosystems on tropical ecosystem. They provide a large number of important ecosystem services. Despite their importance, they appear to be one of the most susceptible marine ecosystems. Dramatic decreasing of coral reefs has been reported from every part of the world. Indonesia contains 18% of coral reefs of world's total. Unfortunately the status of coral reefs in Indonesia is already in critical and poor condition. Coral reefs communities in Indonesia are subjected to a variety of environmental disturbance. Threats to Indonesia's coral reefs resources can be divided into two main types: anthropogenic and natural disturbances. The major anthropogenic disturbances on coral reefs in Indonesia are destructive fishing, pollution, coastal development, mining and harvesting live fish and coral, tourism. The natural disturbances such as cyclones, volcanic eruptions, earthquakes, tsunami and predator also contribute to coral reefs destruction in Indonesia. In my paper I tried to compare between natural and anthropogenic disturbances on coral reefs in Indonesia and raised these questions: (i) how the natural disturbances differ from anthropogenic area (ii) which type of disturbances has caused the greatest impact on coral reef ecosystem. My finding is that both of anthropogenic and natural disturbances give major impact on coral reefs in Indonesia. The important issue here is coral reef resilience could be disturbed by synergistic effects between various anthropogenic and natural disturbances. This phenomenon has significant conservation and management implication. The appropriate management should be conducted to protect coral reefs ecosystem in Indonesia. Mangrove management will succeed only when local people are involved and get sustainable benefits from mangrove ecosystem. Community based management and Integrated Coastal Zone Management (ICZM) are type of management that can be applied on coral reef ecosystems in Indonesia.

  • PDF

Marine Ecosystem Response to Nutrient Input Reduction in Jinhae Bay, South Korea

  • Oh, Hyun-Taik;Lee, Won-Chan;Koo, Jun-Ho;Park, Sung-Eun;Hong, Sok-Jin;Jung, Rae-Hong;Park, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.819-827
    • /
    • 2006
  • We study on the dynamic interaction with a simulated physical-biological coupled model response to nutrient reduction scenario in Jinhae Bay. According to the low relative errors, high regression coefficients of COD and DIN, and realistic distribution in comparison to the observation, our coupled model could be applicable for assessing the marine ecosystem response to nutrient input reduction in Jinhae Bay. Due to the new construction and expansion of sewage treatment plant from our government, we reduce 50% nutrient inputs near Masan Bay and sewage treatment plant. COD achieves Level II in Korea standard of the water quality from the middle of the Masan Bay to all around Jinhae Bay except the inner Masan Bay remaining at Level III. When our experiment reduces 50% nutrient inputs near Masan Bay and Dukdong sewage treatment plant simultaneously, COD decreases to about 0.1-1.2 mg/L $(128^{\circ}30'{\sim}128^{\circ}40'\;E,\;35^{\circ}05'{\sim}35^{\circ}11'\;N)$. The COD from the middle of the Masan Bay to Jinhae Bay achieves Level II.

A Case Study on the Management of Biofouling for Protection of the Marine Ecosystem (국외사례를 기반으로 한 선체부착생물 국내 관리방안 연구)

  • Ha, Shin-Young;Park, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.151-157
    • /
    • 2020
  • Harmful aquatic organisms introduced by ship movement cause marine ecosystem disturbances and are in the form of ballastwater and biofouling. Harmful marine life from ballastwater has been considerably reduced because mandatory treatment on all vessels is required to install onboard vessels. However, there remains risk of migration because biofouling is recommended to countries for management through the IMO guidelines. In particular, biofouling management has recently attracted attention for achieving IMO GHG reduction targets because it contributes to energy efficiency, as well as there are reasons for marine ecosystem protection. In recent years, increasing international consensus on the need for biofouling management is likely to lead to enforcement regulations. Thus, this study suggests the management method of hull attachment organisms in Korea, focusing on the cases of foreign countries that have regulated hull attachment organisms.

A study on the ecosystem-based resource management system of self-regulatory community fisheries (자율관리 마을어업의 생태계 기반 자원관리시스템 연구)

  • Park, Hee-Won;Zhang, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • A self-regulatory community fisheries management program in Korea is designed to enhance fisheries resources, to protect fishing grounds of self-regulatory communities, and to manage their fisheries resources by their own regulations and knowledge. This study explored an applicable ecosystem-based management plan based on the scientific investigation and analysis. This study suggested objectives, indicators and reference points of the ecosystem-based resource management system which are applicable to selfregulatory community fisheries. The objectives of the management system are to maintain sustainable fisheries production, to maintain optimum fishing intensity, to reduce by-catch, to conserve spawning ground and habitat, to maintain optimum habitat environment, to increase/maintain abundance of prey species, to increase/maintain stock biomass, and to conduct stock enhancement on the basis of scientific assessment. The improved methods for the assessment and management are introduced by demonstrating a self-regulatory fishery which targets on hen clam in Dong-li fishing village in Busan.

Multiple Implications of the Restoration of Coastal Wetland Ecosystem and the Establishment of a Strategic Restoration Framework (갯벌복원의 함의와 복원추진체계 구축에 관한 연구)

  • Nam, Jungho;Son, Kyu-Hee;Khim, Jong Seong
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.211-223
    • /
    • 2015
  • Korean society has been recently promoting the restoration of coastal wetlands. These efforts might become the basis of a policy framework that compensates for the limitations of a regulation-oriented policy such as the designation of Marine Protected Areas (MPAs). The shift in government policy could contribute to strengthening the socioeconomic infrastructure of coastal development through the accumulation of ecological capital. Although our scientific efforts and social demands in regard to the ecological restoration of the coastal wetlands have increased during the past years, the bases for restoration in Korea requires that scientific, technological, financial, social and legal aspects be enhanced. The present study re-examined the concept and attitudes behind coastal wetland restoration in the light of changing circumstances in Korea. Herein, we first defined coastal wetland restoration as "An act of recovering the functions of the ecosystem of coastal wetlands to a state that resembles conditions prior to being damaged." Next, this study discussed the limitations and future directions of such restoration efforts based on the descriptive analyses of recent restoration practices from social, economic, and technological aspects. Finally, we suggest future policy directions regarding coastal wetland restoration on the basis of a PFST (Policy, Financial, Social, and Technological) analysis; 1) re-arranging legal mechanisms, 2) setting multi-dimensional restoration goals, 3) establishing a multi-discipline- and convergence based R&D system, 4) linking spatial management and local development to the restoration, 5) building restoration governance at the local level, 6) implementing an ecosystem service payment system, and 7) applying test-bed projects in accordance with proper directions.

Comparison of Morphological Analysis and DNA Metabarcoding of Crustacean Mesozooplankton in the Yellow Sea (황해 갑각 중형동물플랑크톤의 형태 분석과 DNA 메타바코딩 비교)

  • Kim, Garam;Kang, Hyung-Ku;Kim, Choong-Gon;Choi, Jae Ho;Kim, Sung
    • Ocean and Polar Research
    • /
    • v.43 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • Studies on marine zooplankton diversity and ecology are important for understanding marine ecosystem, as well as environmental conservation and fisheries management. DNA metabarcoding is known as a useful tool to reveal and understand diversity among animals, but a comparative evaluation with classical microscopy is still required in order to properly use it for marine zooplankton research. This study compared crustacean mesozooplankton taxa revealed by morphological analysis and metabarcoding of the cytochrome oxidase I (COI). A total of 17 crustacean species were identified by morphological analysis, and 18 species by metabarcoding. Copepods made up the highest proportion of taxa, accounting for more than 50% of the total number of species delineated by both methods. Cladocerans were not found by morphological analysis, whereas amphipods and mysids were not detected by metabarcoding. Unlike morphological analysis, metabarcoding was able to identify decapods down to the species level. There were some discrepancies in copepod species, which could be due to a lack of genetic database, or biases during DNA extraction, amplification, pooling and bioinformatics. Morphological analysis will be useful for ecological studies as it can classify and quantify the life history stages of marine zooplankton that metabarcoding cannot detect. Metabarcoding can be a powerful tool for determining marine zooplankton diversity, if its methods or database are further supplemented.