• Title/Summary/Keyword: Mapping error

Search Result 452, Processing Time 0.032 seconds

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry (무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석)

  • Lee, Jae One;Kim, Doo Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.525-533
    • /
    • 2019
  • There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.

Assessment of Possibility of Adopting the Error Tolerance of Geometric Correction on Producing 1/5,000 Digital Topographic Map for Unaccessible Area Using the PLEIADES Images and TerraSAR Control Point (PLEIADES 영상과 TerraSAR 기준점을 활용한 비접근지역의 1/5,000 수치지형도 제작을 위한 기하보정의 허용오차 만족 가능성 평가)

  • Jin Kyu, Shin;Young Jin, Lee;Gyung Jong, Kim;Jun Hyuk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2015
  • Recently, the necessity of spatial data in unaccessible area was challenged to set up various plans and policies for preparing the unification and the cooperative projects between South-North Korea. Therefore, this paper planned to evaluate the possibility of adopting the error tolerance in Geometric correction for 1/5,000 digital topographic mapping, using the PLEIADES images and the TerraSAR GCPs (Ground Control Points). The geometric correction was performed by changing the number and placement of GCPs by GPS (Global Positioning System) surveying, as the optimal placement of 5 GCPs were selected considering the geometric stability and steady rate. The positional accuracy evaluated by the TerraSAR GCPs, which were selected by optimal placement of GCPs. The RMSE in control points were X=±0.64m, Y=±0.46m, Z=±0.28m. While the result of geometric correction for PLEIADES images confirmed that the RMSE in control points were X=±0.34m, Y=±0.27m, Z=±0.11m, the RMSE in check points were X=±0.50m, Y=±0.30m, Z=±0.66m. Through this study, we believe if spatial data can integrate with the PLEIADES images and the optimal TerraSAR GCPs, it will be able to obtain the high-precision spatial data for adopting the regulation of 1/5,000 digital topographic map, which adjusts the computation as well as the error bound.

Study on the Selection and Application of a Spatial Analysis Model Appropriate for Selecting the Radon Priority Management Target Area (라돈 우선관리 대상 지역 선정에 적합한 공간분석모형의 선정 및 활용에 관한 연구)

  • Nam Goung, Sun Ju;Choi, Kil Yong;Hong, Hyung Jin;Yoon, Dan Ki;Kim, Yoon Shin;Park, Si Hyun;Kim, Yoon Kwan;Lee, Cheol Min
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • Objective: The aims of this study were to provide the basic data for establishing a precautionary management policy and to develop a methodology for selecting a radon management priority target area suitable for the Korean domestic environment. Methods: A suitable mapping method for the domestic environment was derived by conducting a quantitative comparison of predicted values and measured values that were calculated through implementation of two models such as IDW and RBF methods. And a qualitative comparison including the clarity of information transmission of the written radon map was carried out. Results: The predicted and measured values were obtained through the implementation of the spatial analysis models. The IDW method showed the lowest in the calculated mean square error and had a higher correlation coefficient than the other methods. As results of comparing the uncertainty using the jackknife concept and the concept of error distance for comparison of the differences according to the model interpolation method, the sum of the error distances showed a modest increase compared with the RBF method. As a result of qualitatively comparing the information transfer clarity between the radon maps prepared with the predicted values through the model implementation, it was found that the maps plotted using the predicted values by the implementation of the IDW method had greater clarity in terms of highness and lowness of radon concentration per area compared with the maps plotted by other methods. Conclusions: The radon management priority area suggests selecting a metropolitan city including an area with a high radon concentration.

Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations (GEMS 위성관측에 기반한 지면반사도 산출 시에 오차 유발 변수에 대한 민감도 실험)

  • Shin, Hee-Woo;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • The information of surface reflectance ($R_{sfc}$) is important for the heat balance and the environmental/climate monitoring. The $R_{sfc}$ sensitivity to error-induced variables for the Geostationary Environment Monitoring Spectrometer (GEMS) retrieval from geostationary-orbit satellite observations at 300-500 nm was investigated, utilizing polar-orbit satellite data of the MODerate resolution Imaging Spectroradiometer (MODIS) and Ozone Mapping Instrument (OMI), and the radiative transfer model (RTM) experiment. The variables in this study can be cloud, Rayleigh-scattering, aerosol, ozone and surface type. The cloud detection in high-resolution MODIS pixels ($1km{\times}1km$) was compared with that in GEMS-scale pixels ($8km{\times}7km$). The GEMS detection was consistent (~79%) with the MODIS result. However, the detection probability in partially-cloudy (${\leq}40%$) GEMS pixels decreased due to other effects (i.e., aerosol and surface type). The Rayleigh-scattering effect in RGB images was noticeable over ocean, based on the RTM calculation. The reflectance at top of atmosphere ($R_{toa}$) increased with aerosol amounts in case of $R_{sfc}$<0.2, but decreased in $R_{sfc}{\geq}0.2$. The $R_{sfc}$ errors due to the aerosol increased with wavelength in the UV, but were constant or slightly decreased in the visible. The ozone absorption was most sensitive at 328 nm in the UV region (328-354 nm). The $R_{sfc}$ error was +0.1 because of negative total ozone anomaly (-100 DU) under the condition of $R_{sfc}=0.15$. This study can be useful to estimate $R_{sfc}$ uncertainties in the GEMS retrieval.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

Possibility Estimating of Unaccessible Area on 1/5,000 Digital Topographic Mapping Using PLEIADES Images (PLEIADES 영상을 활용한 비접근지역의 1/5,000 수치지형도 제작 가능성 평가)

  • Shin, Jin Kyu;Lee, Young Jin;Choi, Hae Jin;Lee, Jun Hyuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.299-309
    • /
    • 2014
  • This paper evaluated the possibility for 1/5,000 digital topographic mapping by using PLEIADES images of 0.5m GSD(Ground Sampling Distance) resolution that has recently launched. Those results of check points by applying the initial RPC(Rational Polynomial Coefficient) of PLEIADES images came out as; RMSE of those were $X={\pm}1.806m$, $Y={\pm}2.132m$, $Z={\pm}1.973m$. Also, if we corrected geometric correction using 16 GCP(Ground Control Point)s, the results of RMSE became $X={\pm}0.104m$, $Y={\pm}0.171m$, $Z={\pm}0.036m$, and t he RMSE of check points were $X={\pm}0.357m$, $Y={\pm}0.239m$, $Z={\pm}0.188m$; which of those results indicated the accuracy of standard adjustment complied in error tolerances of the 1/5,000 scale. Additionally, we converted coordinates of points, obtained by TerraSAR. for comparing with measurements from GPS(Global Positioning System) surveying. The RMSE of comparing converted and GPS points were $X={\pm}0.818m$, $Y={\pm}0.200m$, $Z={\pm}0.265m$, which confirmed the possibility for 1/5,000 digital topographic mapping with PLEIADES images and GCPs. As method of obtaining GCPs in unaccessible area, however, the outcome evaluation of GCPs extracted from TerraSAR images was not acceptable for 1/5,000 digital topographic mapping. Therefore, we considered that further researches are needed on applicability of GCPs extracted from TerraSAR images for future alternative method.

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Level 3 Type Land Use Land Cover (LULC) Characteristics Based on Phenological Phases of North Korea (생물계절 상 분석을 통한 Level 3 type 북한 토지피복 특성)

  • Yu, Jae-Shim;Park, Chong-Hwa;Lee, Seung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.457-466
    • /
    • 2011
  • The objectives of this study are to produce level 3 type LULC map and analysis of phenological features of North Korea, ISODATA clustering of the 88scenes of MVC of MODIS NDVI in 2008 and 8scenes in 2009 was carried out. Analysis of phenological phases based mapping method was conducted, In level 2 type map, the confusion matrix was summarized and Kappa coefficient was calculated. Total of 27 typical habitat types that represent the dominant species or vegetation density that cover land surface of North Korea in 2008 were made. The total of 27 classes includes the 17 forest biotopes, 7 different croplands, 2 built up types and one water body. Dormancy phase of winter (${\sigma}^2$ = 0.348) and green up phase in spring (${\sigma}^2$ = 0.347) displays phenological dynamics when much vegetation growth changes take place. Overall accuracy is (851/955) 85.85% and Kappa coefficient is 0.84. Phenological phase based mapping method was possible to minimize classification error when analyzing the inaccessible land of North Korea.

GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • Real-time Aerial Monitoring System (RAMS) is to perform the rapid mapping in an emergency situation so that the geoinformation such as orthophoto and/or Digital Elevation Model is constructed in near real time. In this system, the GPS/INS plays an very important role in providing the position as well as the attitude information. Therefore, in this study, the performance of an IMU sensor which is supposed to be installed on board the RAMS is evaluated. And the integration algorithm of GPS/INS are tested with simulated dataset to find out which is more appropriate in real time mapping. According to the static and kinematic results, the sensor shows the position error of 3$\sim$4m and 2$\sim$3m, respectively. Also, it was verified that the sensor performs better on the attitude when the magnetic field sensor are used in the Aerospace mode. In the comparison of EKF and UKF, the overall performances shows not much differences in straight as well as in curved trajectory. However, the calculation time in EKF was appeared about 25 times faster than that of UKF, thus EKF seems to be the better selection in RAMS.

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF