다기준 의사결정 시 활용할 수 있는 스카이라인 질의는 다수의 선택지 중에서 사용자가 '선호하지 않을 만한'(uninteresting) 선택지를 제거함으로써 사용자가 검토해야 하는 선택지의 수를 대폭 감소시키기 때문에 대용량 데이터 분석 시 매우 유용하게 활용될 수 있다. 이러한 배경에서 대용량 데이터에 대한 스카이라인 질의를 분산 병렬 처리하는 기법이 각광을 받고 있으며, 특히 맵리듀스(MapReduce) 기반의 분산 병렬 처리 기법 연구가 활발히 진행되어 왔다. 맵리듀스 기반 알고리즘의 병렬성 제고를 위해서는 부하 불균등 문제 중복 계산 문제 과다한 네트워크 비용 발생 문제를 해소해야 한다. 본 논문에서는 부하 불균등 문제와 중복 계산 문제를 해소하면서도 데이터 샘플링 기반 프루닝을 통해 네트워크 비용 절감 시킬 수 있는 맵리듀스 기반 병렬 스카이라인 질의 처리 기법인 MR-SEAP(MapReduce sample Skyline object Equality Angular Partitioning)을 소개한다. 또한 다양한 관점에서의 실험 평가함으로써 제안 기법의 효용성을 다방면으로 검증했다.
Kim, Jong-Chan;An, Jae-Hoon;Kim, Young-Hwan;Jeon, Ki-Man
한국컴퓨터정보학회논문지
/
제20권8호
/
pp.1-6
/
2015
The MapReduce Program of Hadoop Distributed File System operates on any unspecified nodes due to distributed-parallel process and block replicate for data stability. Since it is difficult to guarantee the cache locality when a Solid State Drive is used as a cache in hadoop, cache hit-rate is decreased. In this paper, we suggest a method to improve cache hit rate by pre-loading the input data of the MapReduce onto the SSD cache. To perform this method, we estimated the blocks that are used on each node by using capacity scheduler and block metadata. Eventually we could increase the performance of SSD cache by loading the blocks onto SSD cache before the Map Task run.
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.121-126
/
2022
Hadoop and Apache Spark are Apache Software Foundation open source projects, and both of them are premier large data analytic tools. Hadoop has led the big data industry for five years. The processing velocity of the Spark can be significantly different, up to 100 times quicker. However, the amount of data handled varies: Hadoop Map Reduce can process data sets that are far bigger than Spark. This article compares the performance of both spark and map and discusses the advantages and disadvantages of both above-noted technologies.
네트워크와 IT 기술의 발전으로 사용자들은 장소에 구애 받지 않고 어디서든 본인이 원하는 아이템을 검색하고 구매하고 있다. 이에 따라 추천시스템에서 급증하는 데이터로 인한 확장성 문제를 어떻게 해결할 것인가에 대한 연구들이 다양하게 진행되고 있다. 본 논문에서는 Tag 가중치를 적용한 아이템 기반 협업 필터링 기법과 분산 병렬 처리 방식인 MapReduce 방법을 적용한 추천 기법을 제안한다. 제안하는 기법은 속도 향상과 효율성을 위해 전처리 과정에서 아이템을 카테고리별로 분류하고 노드 수에 맞게 그룹지은 후 사용한다. 각 분산 노드에서 4번의 Map-Reduce 단계를 통해 데이터 처리를 진행하는데 사용자에게 더 나은 아이템을 추천하기 위해 유사도 계산에서 아이템 Tag 가중치를 사용한다. 마지막 Reduce 단계를 거쳐 출력된 예측값 중 상위 N개의 아이템을 추천에 사용한다. 실험을 통해 제안 하는 기법이 대량의 데이터를 효율적으로 처리하며 기존의 아이템 기반 기법보다 추천의 적합성도 향상되는 것을 확인하였다.
최근 데이터의 폭발적인 증가로 인해 대규모 데이터의 분석에 대한 요구를 충족할 수 있는 방법들이 계속 연구되고 있다. 본 논문에서는 맵리듀스를 이용한 분산 병렬 처리를 통해 대규모 데이터 큐브의 효율적인 계산이 가능한 MRIterativeBUC 알고리즘을 제안하였다. MRIterativeBUC 알고리즘은 기존의 BUC 알고리즘을 맵리듀스의 반복적 단계에 따른 효율적인 동작이 가능하도록 개발되었고, 기존의 대규모 데이터 큐브 계산에 따른 문제인 데이터 크기와 저장 및 처리 능력의 한계를 해결하였다. 또한, 분석자의 관심 부분에 대해서만 계산하는 빙산 큐브 개념의 도입과 파티셔닝, 정렬과 같은 큐브 계산을 분산 병렬 처리하는 방법 등의 장점들을 통해 데이터 방출량을 줄여서 네트워크 부하를 줄이고, 각 노드의 처리량을 줄이며, 궁극적으로 전체 큐브 계산 비용을 줄일 수 있다. 본 연구 결과는 맵리듀스를 이용한 데이터 큐브 계산에 대해서 상향식 처리와 반복적 알고리즘을 통해 다양한 확장이 가능하며, 여러 응용 분야에서 활용이 가능할 것으로 예상된다.
인터넷과 스마트기기의 발달로 인해 소셜미디어 등 다양한 미디어의 접근의 용이해짐에 따라 많은 양의 빅데이터들이 생성되고 있다. 특히 다양한 인터넷 서비스를 제공하는 기업들은 고객 성향 및 패턴, 보안성 강화를 위해 맵리듀스 기반 빅데이터 분석 기법들을 활용하여 빅데이터 분석하고 있다. 그러나 맵리듀스는 리듀스 단계에서 생성되는 리듀서 객체의 수를 한 개로 정의하고 있어, 빅데이터 분석할 때 처리될 많은 데이터들이 하나의 리듀서 객체에 집중된다. 이로 인해 리듀서 객체는 병목현상이 발생으로 빅데이터 분석 처리율이 감소한다. 이에 본 논문에서는 로그 분석처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법을 제안한다. 제안한 기법은 리듀서 분할 단계와 분석 결과병합 단계로 구분하며 리듀서 객체의 수를 유동적으로 생성하여 병목현상을 감소시켜 빅데이터 처리율을 향상시킨다.
k-Nearest Neighbor(k-NN)그래프는 모든 노드에 대한 k-NN 정보를 나타내는 데이터 구조로써, 협업 필터링, 유사도 탐색과 여러 정보검색 및 추천 시스템에서 k-NN그래프를 활용하고 있다. 이러한 장점에도 불구하고 brute-force방법의 k-NN그래프 생성 방법은 $O(n^2)$의 시간복잡도를 갖기 때문에 빅데이터 셋에 대해서는 처리가 곤란하다. 따라서, 고차원, 희소 데이터에 효율적인 Locality Sensitive Hashing 기법을 (key, value)기반의 분산환경인 MapReduce환경에서 사용하여 k-NN그래프를 생성하는 알고리즘이 연구되고 있다. Locality Sensitive Hashing 기법을 사용하여 사용자를 이웃후보 그룹으로 만들고 후보내의 쌍에 대해서만 brute-force하게 유사도를 계산하는 two-stage 방법을 MapReduce환경에서 사용하였다. 특히, 그래프 생성과정 중 유사도 계산하는 부분이 가장 많은 시간이 소요되므로 후보 그룹을 어떻게 만드는 것인지가 중요하다. 기존의 방법은 사이즈가 큰 후보그룹을 방지하는데 한계점이 있다. 본 논문에서는 효율적인 k-NN 그래프 생성을 위하여 사이즈가 큰 후보그룹을 재구성하는 알고리즘을 제시하였다. 실험을 통해 본 논문에서 제안한 알고리즘이 그래프의 정확성, Scan Rate측면에서 좋은 성능을 보임을 확인하였다.
최근 인터넷과 통신기술, 특히 모바일과 관련된 기술의 급속한 발전으로 소셜 커뮤니케이션 수단으로 대표되는 SNS(Social Networking Service)가 중요한 이슈로 부각되어지고 있다. SNS 서비스 제공시 중요하게 고려되어져야 할 사항은 정확하고 의미 있는 데이터를 통해서 사용자가 원하고 관심 있는 분야의 정보를 어떻게 제공할 것인가에 초점이 맞춰져 있어야 한다. 그러나 최근 폭발적으로 증가되어지고 있는 소셜 데이터 때문에 사용자는 의미 분석이 정확하게 이루어지지 않은 신뢰성이 결여된 소셜 커뮤니케이션 서비스를 제공받고 있다. 이러한 소셜데이터 분석의 문제점을 해결하기 위해서 본 논문에서는 소셜 네트워크 서비스에 필요한 데이터를 수집하고, 클라우드 컴퓨팅 환경에서 수집된 대용량 SNS 데이터의 의미를 분석 할 수 있는 MapReduce 기반의 분석 모듈의 구조를 제안하였다. 제안한 모듈은 의미 분석에 필요한 소셜 데이터를 수집하는 수집 기능과 수집된 소셜데이터의 의미 분석을 수행하는 분석 기능을 포함하고 있다. 수집 기능은 SNS에서 생성되는 텍스트 형태의 데이터를 수집하고 MapReduce를 통해서 데이터를 분석하기 쉽게 적절한 크기로 생성된 파일을 분할한다. 수집된 소셜 데이터의 의미 분석은 기존 TF-IDF 방식에 개선된 Weighted-MINMAX 적용한 알고리즘을 통해서 구현하였다. 개선된 알고리즘은 단어의 중요도를 평가하고, 중요도가 높은 단어로 구성된 의미정보 제공 서비스를 지원한다. 시스템의 성능 평가를 위해서 노드별 데이터 처리시간과 추출 키워드의 정확도를 측정하였다.
The performance of large scale software applications has been automatically increasing for last few decades under the influence of Moore's law - the number of transistors on a microprocessor roughly doubled every eighteen months. However, on-chip transistors limitations and heating issues led to the emergence of multicore processors. The energy efficient ARM based System-on-Chip (SoC) processors are being considered for future high performance computing systems. In this paper, we present a case study of two widely used parallel programming models i.e. MPI and MapReduce on distributed memory cluster of ARM SoC development boards. The case study application, Black-Scholes option pricing equation, was parallelized and evaluated in terms of power consumption and throughput. The results show that the Hadoop implementation has low instantaneous power consumption that of MPI, but MPI outperforms Hadoop implementation by a factor of 1.46 in terms of total power consumption to execution time ratio.
맵리듀스는 빅데이터 분석 및 처리에 널리 사용되는 프로그래밍 모델이다. 빅데이터 분석을 위해 흔히 사용되는 질의 중 하나는 집계 질의(aggregate query)이다. 본 논문에서는 여러 사용자가 동시에 여러 집계 질의를 계속해서 요청하는 경우, 맵리듀스를 사용하여 이들 질의를 효율적으로 처리하는 방법을 제안한다. 제안 방법은 각 집계 질의를 개별적으로 처리하지 않고, 여러 집계 질의를 묶어 하나의 최적화된 맵리듀스 잡(job)으로 만들어 일괄 처리한다. 그 결과로 제안 방법은 단순 방법에 비해 시간당 처리하는 질의 수를 크게 증가시킨다. 성능 평가를 통해, 제안 방법은 단순 방법에 비해 질의 처리 속도를 크게 향상시킴을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.