• Title/Summary/Keyword: Map building algorithm

Search Result 141, Processing Time 0.026 seconds

Flood Damage Assessment According to the Scenarios Coupled with GIS Data (GIS 자료와 연계한 시나리오별 홍수피해액 분석)

  • Lee, Geun-Sang;Park, Jin-Hyeg
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.71-80
    • /
    • 2011
  • A simple and an improved methods for the assessment of flood damage were used in previous studies, and the Multi-Dimensional Flood Damage Assessment (MD-FDA) has been applied since 2004 in Korea. This study evaluated flood damage of dam downstream using considering MD-FDA method based on GIS data. Firstly, flood water level with FLDWAV (Flood Wave routing) model was input into cross section layer based on enforcement drainage algorithm, water depth grid data were created through spatial calculation with DEM data. The value of asset of building and agricultural land according to local government was evaluated using building layer from digital map and agricultural land map from landcover map. Also, itemized flood damage was calculated by unit price to building shape, evaluated value of housewares to urban type, unit cost to crop, tangible and inventory asset of company connected with building, agricultural land, flooding depth layer. Flood damage in rainfall frequency of 200 year showed 1.19, 1.30 and 1.96 times to flood damage in rainfall frequency of 100 year, 50 year and 10 year respectively by flood damage analysis.

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map (데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구)

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF

A Study on the Automated Algorithm for Legal Calculation of Weighted Average of Building Surface - Based on Rhino Grasshopper Using Digital Topographic Map Data - (건축물 지표면 가중평균 법정산정 자동화 알고리즘에 관한 연구 - 수치지형도 데이터를 이용한 Rhino Grasshopper 중심으로 -)

  • Choi, Se-Yeong;Song, Seok-Jae;Kim, Yong-Seong
    • Journal of KIBIM
    • /
    • v.13 no.2
    • /
    • pp.1-15
    • /
    • 2023
  • Since the 1960s, the Korean Peninsula, which consists of 77.4 of the country's land and mountains, has seen a surge in demand for buildings due to population concentration due to urbanization and industrialization. Since then, the development of slopes has been inevitable due to the concentration and expansion of the city's population. When building a building on a slope, it is important to set the height of the surface. In this case, the means of regulating buildings in construction-related laws, such as the building closure ratio, floor area ratio, number of floors and total floor area of buildings, have an overall effect on buildings through the height of the surface. In the Korean Building Act, the setting of the height of the ground affects the calculation of the building height limit standard and the calculation of the underground floor, and it takes a long time to calculate. Therefore, the time required for attempts to change various design plans of buildings increases. The purpose of this study is to speed up the time required to calculate the weighted average of the surface when constructing buildings on slopes. In addition, the existing calculation process allows various design attempts compared to the same time given.

Implementation of a Mobile Robot Using Landmarks

  • Kim, Sang-Ju;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.252-255
    • /
    • 2003
  • In this paper, we suggest the method for a service robot to move safely from an initial position to n goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of n mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of n sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

  • PDF

Control and Calibration for Robot Navigation based on Light's Panel Landmark (천장 전등패널 기반 로봇의 주행오차 보정과 제어)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • In this paper, we suggest the method for a mobile robot to move safely from an initial position to a goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of a mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of a sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

Sonar Map Construction Based on Acoustics Theory for Autonomous Mobile Robots (음향학에 기반한 자율이동로봇의 초음파 확률격자지도 작성)

  • Lee Y.C.;Lee S.J.;Lim J.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.400-403
    • /
    • 2005
  • The sonar sensors can be divided into a piezo type and an electrostatic type according to a principle of an operating system. The electrostatic type of a sonar sensor is used for map building in this paper. If we know the characteristics of sonar sensor, we can derive the ultrasonic pressure equation from an acoustics theory. We, therefore, developed Ultrasonic Pressure Probabilistic Model (UPPM) to consider the sound pressure in the probability updating process. In this paper, we found that the quality of the resulting probability map is considerably improved, through combining the UPPM with the grid-based mapping algorithm.

  • PDF

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF

Application and Evaluation of Vector Map Watermarking Algorithm for Robustness Enhancement (강인성 향상을 위한 벡터 맵 워터마킹 알고리즘의 적용과 평가)

  • Won, Sung Min;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.31-43
    • /
    • 2013
  • Although the vector map data possesses much higher values than other types of multimedia, the data copyright and the protection against illegal duplication are still far away from the attention. This paper proposes a novel watermarking technique which is both robust to diverse attacks and optimized to a vector map structure. Six approaches are proposed for the design of the watermarking algorithm: point-based approach, building a minimum perimeter triangle, watermark embedding in the length ratio, referencing to the pixel position of the watermark image, grouping, and using the one-way function. Our method preserves the characteristics of watermarking such as embedding effectiveness, fidelity, and false positive rate, while maintaining robustness to all types of attack except a noise attack. Furthermore, our method is a blind scheme in which robustness is independent of the map data. Finally, our method provides a solution to the challenging issue of degraded robustness under severe simplification attacks.

Path Planning for an Intelligent Robot Using Flow Networks (플로우 네트워크를 이용한 지능형 로봇의 경로계획)

  • Kim, Gook-Hwan;Kim, Hyung;Kim, Byoung-Soo;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.