• 제목/요약/키워드: Map building algorithm

검색결과 141건 처리시간 0.022초

맵 빌딩과 주행 알고리즘 기반의 이동로봇 구현 (An Implementation of a Mobile Robot Based on Map Building and Traveling Algorithm)

  • 김종화;김진규;임재권;한승봉
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.351-358
    • /
    • 2008
  • This paper introduces a map building algorithm which can collect environmental information using ultrasonic sensors. And also this paper discusses a traveling algorithm using environmental information which leads to the map building algorithm. In order to accomplish the proposed traveling algorithm, this paper additionally discusses a path revision algorithm. For verifying the proposed algorithms, several experiments are executed using a mobile robot physically designed in this paper. The conclusion is that the proposed algorithm is very effective and is applicable to mobile robots especially requiring a low-cost environmental information.

이동로봇의 효율적인 주행을 위한 맵 빌딩 알고리즘의 구현 (An Implementation of a Map Building Algorithm for Efficient Traveling of Mobile Robots)

  • 김종화;김진규;임재권;한승봉
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.184-191
    • /
    • 2008
  • In order for a mobile robot to move under unknown or uncertain environment, it must have an environmental information. In collecting environmental information, the mobile robot can use various sensors. In case of using ultrasonic sensors to collect an environmental information, it is able to comprise a low-cost environmental recognition system compared with using other sensors such as vision and laser range-finder. This paper proposes a map building algorithm which can collect environmental information using ultrasonic sensors. And also this paper suggests a traveling algorithm using environmental information which leads to the map building algorithm. In order to accomplish the proposed traveling algorithm, this paper additionally discusses a position revision algorithm.

레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발 (The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle)

  • 이정엽;이상훈;김정하;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF

A Correction System of Odometry Error for Map Building of Mobile Robot Based on Sensor fusion

  • Hyun, Woong-Keun
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.709-715
    • /
    • 2010
  • This paper represents a map building and localization system for mobile robot. Map building and navigation is a complex problem because map integrity cannot be sustained by odometry alone due to errors introduced by wheel slippage, distortion and simple linealized odometry equation. For accurate localization, we propose sensor fusion system using encoder sensor and indoor GPS module as relative sensor and absolute sensor, respectively. To build a map, we developed a sensor based navigation algorithm and grid based map building algorithm based on Embedded Linux O.S. A wall following decision engine like an expert system was proposed for map building navigation. We proved this system's validity through field test.

ICP 알고리즘을 이용한 2차원 격자지도 보정 (2D Grid Map Compensation using an ICP Algorithm)

  • 이동주;황요섭;윤열민;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1170-1174
    • /
    • 2014
  • This paper suggests using the ICP (Iterative Closet Point) algorithm to compensate a two-dimensional map. ICP algorithm is a typical algorithm method using matching distance data. When building a two-dimensional map, using data through the value of a laser scanner, it occurred warping and distortion of a two-dimensional map because of the difference of distance from the value of the sensor. It uses the ICP algorithm in order to reduce any error of line. It validated the proposed method through experiment involving matching a two-dimensional map based reference data and measured the two-dimensional map.

이동로봇의 맵 빌딩 기반 최적 주행 알고리즘 (An Optimal Traveling Algorithm Based on Map Building for Mobile Robots)

  • 김종화;김진규;임재권;한승봉
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.192-199
    • /
    • 2008
  • In order for a mobile robot to move under unknown or uncertain environment. it is very important to collect environmental information. This paper suggests a traveling algorithm which leads to the map building algorithm and the $A^*$ algorithm under the assumption that environmental information should already be collected. In order to apply the proposed traveling algorithm to a real mobile robot. this paper additionally discusses a path amendment algorithm. For the purpose of verifying the proposed algorithms, several simulations are executed based on a UI host program-based simulation interface and an experiment is executed using a mobile robot under a real unknown environment.

특징 점 기반의 ICP 알고리즘을 이용한 2차원 격자지도 보정 (2D Grid Map Compensation Using ICP Algorithm based on Feature Points)

  • 황요섭;이동주;유호윤;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.965-971
    • /
    • 2015
  • This paper suggests a feature point-based Iterative Closest Point (ICP) algorithm to compensate for the disparity error in building a two-dimensional map. The ICP algorithm is a typical algorithm for matching a common object in two different images. In the process of building a two-dimensional map using the laser scanner data, warping and distortions exist in the map because of the disparity between the two sensor values. The ICP algorithm has been utilized to reduce the disparity error in matching the scanned line data. For this matching process in the conventional ICP algorithm, pre-known reference data are required. Since the proposed algorithm extracts characteristic points from laser-scanned data, reference data are not required for the matching. The laser scanner starts from the right side of the mobile robot and ends at the left side, which causes disparity in the scanned line data. By finding the matching points between two consecutive frame images, the motion vector of the mobile robot can be obtained. Therefore, the disparity error can be minimized by compensating for the motion vector caused by the mobile robot motion. The validity of the proposed algorithm has been verified by comparing the proposed algorithm in terms of map-building accuracy to conventional ICP algorithm real experiments.

가정환경에서의 분류된 지역정보를 통한 계층적 시맨틱 지도 작성 (Building of a Hierarchical Semantic Map with Classified Area Information in Home Environments)

  • 박중태;송재복
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.252-258
    • /
    • 2012
  • This paper describes hierarchical semantic map building using the classified area information in home environments. The hierarchical semantic map consists of a grid, CAIG (Classified Area Information in Grid), and topological map. The grid and CAIG maps are used for navigation and motion selection, respectively. The topological map provides the intuitive information on the environment, which can be used for the communication between robots and users. The proposed semantic map building algorithm can greatly improve the capabilities of a mobile robot in various domains, including localization, path-planning and HRI (Human-Robot Interaction). In the home environment, a door can be used to divide an area into various sections, such as a room, a kitchen, and so on. Therefore, we used not only the grid map of the home environment, but also the door information as a main clue to classify the area and to build the hierarchical semantic map. The proposed method was verified through various experiments and it was found that the algorithm guarantees autonomous map building in the home environment.

모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발 (Development of Map Building Algorithm for Mobile Robot by Using RFID)

  • 김시습;선정안;기창두
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.