• Title/Summary/Keyword: Map Building

Search Result 818, Processing Time 0.028 seconds

Construction of 3D Information Cadastral Map Model Using GIS (GIS를 이용한 3차원정보지적도 모형 구축에 관한 연구)

  • 오이균;양인태;유영걸;천기선
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.577-580
    • /
    • 2004
  • Recently, in a field of cadastre, a computerization of cadastral map is in progress with great growth of GIS field. Also, the needs for the integration of land and building information are widely increasing for integral-management and its application of various land related information. In this study, it is constructed a 3D information cadastral map model that can make the integral management of land, building, connecting land recorders, building management ledgers, building titles, building pictures, and related attribute information.

  • PDF

The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle (레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발)

  • Lee, Jeong-Yeob;Lee, Sang-Hoon;Kim, Jung-Ha;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

An Efficient Update for Attribute Data of the Digital Map using Building Registers : Focused on Building Numbers of the New Address (건축물대장을 이용한 수치지도 속성정보의 효율적 갱신방안 : 새주소사업의 건물번호 이용을 중심으로)

  • Kim, Jung-Ok;Kim, Ji-Young;Bae, Young-Eun;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.275-284
    • /
    • 2008
  • The digital map needs efficiently updating. Because it is a base map at each local government and several geographic information systems and that is the key to enhancing to use spatial data. We suggest the linking method of building registers to the building layers of digital map, to update attribute data of the building layers. To conduct that, it is very important that each building in two data is linked by one-to-one matching. In this paper, we generate the strategy for renewing attribute data of the building layers based on identifier by using identifier of the new address system.

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

A Study on Real-Time Localization and Map Building of Mobile Robot using Monocular Camera (단일 카메라를 이용한 이동 로봇의 실시간 위치 추정 및 지도 작성에 관한 연구)

  • Jung, Dae-Seop;Choi, Jong-Hoon;Jang, Chul-Woong;Jang, Mun-Suk;Kong, Jung-Shik;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.536-538
    • /
    • 2006
  • The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.

  • PDF

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

Vision-based Autonomous Semantic Map Building and Robot Localization (영상 기반 자율적인 Semantic Map 제작과 로봇 위치 지정)

  • Lim, Joung-Hoon;Jeong, Seung-Do;Suh, Il-Hong;Choi, Byung-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.86-88
    • /
    • 2005
  • An autonomous semantic-map building method is proposed, with the robot localized in the semantic-map. Our semantic-map is organized by objects represented as SIFT features and vision-based relative localization is employed as a process model to implement extended Kalman filters. Thus, we expect that robust SLAM performance can be obtained even under poor conditions in which localization cannot be achieved by classical odometry-based SLAM

  • PDF

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

Robust Map Building in Narrow Environments based on Combination of Sonar and IR Sensors (좁은 환경에서 초음파 및 적외선 센서를 융합한 강인한 지도작성)

  • Han, Hye-Min;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.

Designing and Utilizing a Smart Factory Roadmap for CEOs: Leveraging from University-Industry Research Collaboration (경영자를 위한 스마트팩토리 구축 로드맵 설계 및 활용)

  • Park, Jongpil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.285-299
    • /
    • 2018
  • Recently much attention in building smart factory has been dramatically increased. Despite the growing interest in smart factory, few practical guidelines exist how to successfully build smart factory. The purpose of this study is to postulate and develop a road map for building successful smart factory. To enhance mundane realism, we design the road map through University-Industry research collaboration. Specifically, drawing analysis of University-Industry research collaboration, we design a prototype and detailed road map or building successful smart factory. Moreover, we apply the road map into actual smart factory development. By doing so, we successfully prove the effectiveness of the road map. Therefore, this study provides the valuable guidelines and directions to build a successful smart factory. Ultimately this study is able to help a variety of factories which establish and implement smart factory. Further, we hope that this study will be placed to be an important foundation research on behalf of smart factory building.