• Title/Summary/Keyword: Map Balancing

Search Result 42, Processing Time 0.019 seconds

Seamline Determination from Images and Digital Maps for Image Mosaicking (모자이크 영상 생성을 위한 영상과 수치지도로부터 접합선 결정)

  • Kim, Dong Han;Oh, Chae-Young;Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.483-497
    • /
    • 2018
  • Image mosaicking, which combines several images into one image, is effective for analyzing images and important in various fields of spatial information such as a continuous image map. The crucial processes of the image mosaicking are optimal seamline determination and color correction of mosaicked images. In this study, the overlap regions were determined by SURF (Speeded Up Robust Features) for image matching. Based on the characteristics of the edges extracted by Canny filter, seamline candidates were selected from classified edges with their characteristics, and the edges were connected by using Dijkstra algorithm. In particular, anisotropic filter and image pyramid were applied to extract reliable seamlines. In addition, it was possible to determine seamlines effectively and efficiently by utilizing building and road layers from digital maps. Finally, histogram matching and seamline feathering were performed to improve visual quality of the mosaicked images.

Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing (DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해)

  • Hanwoo Lee;Suhwan Kim;Gunwoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.715-720
    • /
    • 2023
  • The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.