• Title/Summary/Keyword: Mao Seed Meal

Search Result 2, Processing Time 0.02 seconds

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.

Effects of dietary rubber seed oil on production performance, egg quality and yolk fatty acid composition of Hy-Line Brown layers

  • Lu, Qiongfen;Chen, Peifu;Chai, Yan;Li, Qihua;Mao, Huaming
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.119-126
    • /
    • 2021
  • Objective: This study aims to evaluate the effects of dietary supplement of rubber seed oil on production performance, egg quality, and yolk fatty acid composition in laying hens during a 16-week feeding trial period. Methods: Forty-eight 25-week-old laying hens of Hy-Line Brown were randomly divided into three groups. Each group comprised four replicates and each replicate had four birds. Rubber seed oil was incorporated into a corn-soybean meal basal diet by 3.5% (group I), 4.5% (group II), or 0 (control group) and equivalent nutrition was supplied for the test groups and the control group. The performance related values were determined using standard or well established methods. Results: No significant difference was found in the production performance, the egg quality, the composition of saturated fatty acids, and the content of cholesterol and monounsaturated fatty acids in the yolk within the three groups. Interestingly, both test groups achieved a significantly higher content of linoleic acid, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid and a significantly lower content of arachidonic acid (p<0.05) compared with the control group. With the increased level of dietary rubber seed oil, there was an increasing trend in the content of n-6 polyunsaturated fatty acids (PUFA), n-3 PUFA and total PUFA, but a declining trend in the n-6/n-3 ratio. Conclusion: These results demonstrate that the rubber seed oil supplemented diet effectively improved the total PUFA content in eggs without impairing the layers' production performance and the egg quality.