• Title/Summary/Keyword: Manufacturing automation

Search Result 787, Processing Time 0.022 seconds

Software Development for Glass-Bulb Automatic Design Integrated System Using Design Axiom (설계공리를 이용한 유리벌브 제품설계 자동화 시스템 구축)

  • Do, Sung-Hee;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1333-1346
    • /
    • 1996
  • As the automation system in manufacturing field works more efficientely, the automation scheme is applied to many areas. In order to reduce the entire manufacturing, cost the design process must be automated. However, design process is so complicated, it is very difficult to construct the design automation system. The axiomatic approach to design provides a general theoretical framework for all design fields, including mechanical design. The key concepts of axiomatic design are : the existence of domains, the characteristic vectors within the domains that can be decomposed into hierarchies through zigzagging between the domains, and the design axioms. Using this approach, the glass bulb design process was analyzed and the design automation software was developed. Through menu display, a user can select or furnish the design input and generate the drawing with ease.

A Study on Inspection Reliability Evaluation of Electric Rice Cooker FCT Inspection Automation System (전기밥솥 FCT 검사 자동화 System의 검사 신뢰성 평가에 관한 연구)

  • Jeong, Hae-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.30-35
    • /
    • 2022
  • This study has focused on the reliability evaluation of FCT inspection automation equipment for electric rice. To evaluate the reliability of FCT inspection automation equipment, voice analysis, Gray/R/G/B channel experiment, FND segment experiment, and robot position repeatability were performed. In the voice analysis experiment, the comparison value between the recorded and digital output waves was over 99%, indicating a very high result. It was confirmed that both the gray/R/G/B experiment using vision and the FND segment could confirm the output value of the product through vision. The position repeatability of the robot is also excellent, so it is concluded that the inspection effect through the FCT automation system will be excellent.

ROBOTICS AND AUTOMATION IN CONSTRUCTION INDUSTRY

  • Younus Khan;G. Chandra Sekhar Reddy;V.S.S. Kumar
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.527-532
    • /
    • 2005
  • The construction industries are facing problems of productivity, quality of work, safety, and the completion of projects in time. In construction industry a worker is exposed to hazardous environment, and has to do more physical work, effecting his health and also productivity. The automation and robotics can offer solution to many problems of the industry. In the past the major barrier to construction automation is the lack of electronic components and systems. This is solved now with the development of information technology, and the current obstacle is the high cost of automated systems, shortage of public money for R&D, and problems of acceptance. The robots employed in construction have followed the same concept as those employed in manufacturing. However, construction industry requires a different kind of robot compared to manufacturing Industry. The robots are stationery and product moves along the assembly line in manufacturing sector, but construction robots have to move about the site because buildings are stationary and of large size. The construction robots must function in adverse weather conditions, including variation in humidity, and temperature and increase the overall construction productivity rate. The major objective of the paper is to review the existing applications of building robots and to assess their implementation in building industry. A case study is considered for the implementation of robots for the painting work of the University Building at Saifabad PG College of Science, Hyderabad, India.

  • PDF

The Current State and Future Directions of Industrial Robotic Arms in Modular Construction

  • Song, Seung Ho;Choi, Jin Ouk;Lee, Seungtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.336-343
    • /
    • 2022
  • Industrial robotic arms are widely adopted in numerous industries for manufacturing automation under factory settings, which eliminates the limitations of manual labor and provides significant productivity and quality benefits. The U.S. modular construction industry, despite having similar controlled factory environments, still heavily relies on manual labor. Thus, this study investigates the U.S., Canada, and Europe-based leading modular construction companies and research labs implementing industrial robotic arms for manufacturing automation. The investigation mainly considered the current research scope, industry state, and constraints, as well as identifying the types and specifications of the robotic arms in use. First, the study investigated well-recognized modular building associations, the Modular Building Institute (MBI), and renowned architecture design magazine, Dezeen to gather industry updates. The authors discovered one university lab and a few companies that adopted Switzerland-based robotic arms, ABB. Researching ABB robotics led to the discovery of ABB's competitor, Germany-based KUKA robotic arms. Consequently, research extended to the companies and labs adopting KUKA models. In total, this study has identified seven modular companies and four research labs. All companies employed robotic arms and gantry robot combinations in a production-line-like system for partial automation, and some adopted design standardization for optimization. The common goal among the labs was to achieve greater flexibility and full automation with robotic arms. This study will help companies better implement robotic arm automation by providing recommendations from investigating its current industry status.

  • PDF

Development of CAM Automation Module(E-ICAM) for 5-axis Machining of Impeller (A Study on Configuration of Module) (임펠러의 5축 CAM 자동화 모듈(E-ICAM)의 개발 (모듈 구성에 관한 연구))

  • Jung, Hyoun-Chul;Hwang, Jong-Dae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.109-114
    • /
    • 2011
  • An impeller is difficult to machine because of severe collision due to the complex shape, overlapping and twisted shape that form impeller blades. So, most CAM software companies have developed CAM module for manufacturing impeller in addition to their CAM software. But it is not still easy for inexperienced users to machine impellers. The purpose of this paper is the development of automatic CAM module for manufacturing impeller(E-ICAM) which is based on visual basic language and it is used CATIA graphical environment in order to be easily machining impellers. Automatic CAM module for manufacturing of impellers generates tool path, and proposes recommended cutting condition according to the material of stock and tool. In addition, it has also included a post processor for 5-axis control machining. Therefore the user can easily machine impellers using this automation module.

자동화 공정내의 셀 콘트롤러 작동 소프트웨어의 개발

  • 이재명;도성의;박경진;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.380-385
    • /
    • 1993
  • The demand for automatic manufacturing systems is incerasing. Computer Integrated Manufacturing(CIM) technology is believed to be a solution for the problem to enhance productivities and flexibilities. Although researches on CIM have been conducted treendously, application of the technology is not widely accepted yet. The CIM research on the shop floor starts with the Flexible Manufacturing System(FMS). One of the crucial obstacles to the FMS is the lack of excellent strategies for efficient operations. The aim of this research is constructing an automation scheme in the low level of factories where various machinaries are involved. An operating strategy is established for an automation unit named as a cell which resides between the upper level computers and manufacturing shop floor. The cell is defined to fit into the total manufacturing system. The defined cell has more functions than conventional cells. A scheduling scheme is adopted for the shop floor operations. A set of software has been developed and tested through simulations and shop floor experiments.

A Study on the Standardization of Fuse Process for Automation of Manufacturing (공장자동화를 위한 신발갑피 Fuse공정 표준화 설계 연구)

  • Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • The shoe manufacturing process is very low compared to other industries due to the labor-intensive process. As automation and smart factories are becoming more and more automated, changes in the shoe manufacturing process are also needed. In this paper, we want to standardize the fuse manufacturing process by modularizing it. First, we defined the terms of shoeupper and fuse process, the shoe upper fuse process by function and classified it as a modular process. The fuse process can be modularized with pattern supply module, pattern recognition module, pattern laminate module, pattern waiting module, adhesion module, heat pressing module, transmission module, etc.

Improvement of Calcium Phosphate Forming Ability of Titanium Implant by Thermal Oxidation Method (열산화법에 의한 티타늄 임플란트의 인산칼슘 결정의 형성 능력 증진)

  • Hwang, Kyu-Seog;An, Jun-Hyung;Lee, Seon-Ok;Yun, Yeon-Hum;Kang, Bo-An;Oh, Jeong-Sun;Kim, Sang-Bok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.460-466
    • /
    • 2002
  • Titanium oxide film was deposited on the commercially pure titanium (cp-Ti) by thermal oxidation method for its medical application. The cp-Ti disks were cleaned and then heat-treated at the temperatures of 500, 550, 600, 650, and 700${\circ}C$, respectively, for 10 min in air or Ar. To test the ability of calcium phosphate formation, the specimens were immersed in the Eagle's minimum essential medium solution at 36.5${\circ}C$ for 15 days. The morphology and chemical composition of the surfaces before and after soaking were analyzed by using FE-SEM and EDS. The in-vitro formation of carbonated calcium phosphate on the thin films containing nano-sized $TiO_2$ crystals was identified.

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.

Teaching about Automation in the Clothing Industry (의류생산자동화의 교육에 대한 제안)

  • 조진숙
    • Journal of the Korean Society of Costume
    • /
    • v.19
    • /
    • pp.75-81
    • /
    • 1992
  • The clothing industry is going through very rapid and innovative automation in almost all processes from the initial design of clothing to the dispatch of the products to the retailer. Educational bodies in teaching clothing and textile techniques should offer courses that enable students to grasp the concepts and potential of automation so that they can confidently cope with further development when they enter the real world of the clothing and textile industry. The article suggests how and what to teach about automation and, gives an overview of the current state of automation in the field of clothing and textiles. What to Teach about Automation. $\cdot$What is the automation of the clothing industry\ulcorner $\cdot$The benefits of, and obstacles to automation in the clothing industry. $\cdot$How to automate the manufacturing process. $\cdot$Recent developments in automation machinery. $\cdot$How to Teach about Automation. $\cdot$Install available machinery at the educational institute and train the students. $\cdot$Practical 'in the field' work experience. $\cdot$Visite to textile machinery exhibitions and industrial sites. $\cdot$Using audio-visual methods. $\cdot$Participation in research projects to develop automatic systems.

  • PDF