• Title/Summary/Keyword: Manufacturing Technologies

Search Result 1,055, Processing Time 0.034 seconds

Analysis of the Green House Gas Reduction Scenarios in the Cement Manufacturing Industry (시멘트산업의 온실가스 배출저감 시나리오 분석)

  • Kim, Hyun-Suk;Kang, Hee-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.912-921
    • /
    • 2006
  • This study examines greenhouse gas reduction potentials in cement manufacturing industry of Korea. An energy system model in the MARKAL (MARKet ALlocation) modeling framework was used in order to identify appropriate energy technologies and to quantify their possible implications In terms of greenhouse gas reduction. The model is characterized as mathematical tool for the long term energy system analysis provides an useful informations on technical assessment. Four scenarios are developed that covers the ti me span from 2000 to 2020. Being technology as a fundamental driving factor of the evolution of energy systems, it is essential to study the basic mechanisms of technological change and its role in developing more efficient, productive and clean energy systems. For this reasons, the learning curves on technologies for greenhouse gas reduction is specially considered. The analysis in this study shows that it is not easy to mitigate greenhouse gas with low cost in cement manufacturing industry under the current cap and trade method of Kyoto protocol.

A Study on Outlier Detection in Smart Manufacturing Applications

  • Kim, Jeong-Hun;Chuluunsaikhan, Tserenpurev;Nasridinov, Aziz
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.760-761
    • /
    • 2019
  • Smart manufacturing is a process of integrating computer-related technologies in production and by doing so, achieving more efficient production management. The recent development of supercomputers has led to the broad utilization of artificial intelligence (AI) and machine learning techniques useful in predicting specific patterns. Despite the usefulness of AI and machine learning techniques in smart manufacturing processes, there are many fundamental issues with the direct deployment of these technologies related to data management. In this paper, we focus on solving the outlier detection issue in smart manufacturing applications. More specifically, we apply a state-of-the-art outlier detection technique, called Elliptic Envelope, to detect anomalies in simulation-based collected data.

IoT-ENABLED MANUFACTURING SYNCHRONIZATION FOR E-COMMERCE

  • Alkhunaizan, Abdulmohsin Suliman
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.269-274
    • /
    • 2021
  • Businesses and manufacturing have benefited from the evolution of digital information technology. The introduction of e-commerce has changed the way companies are conducted, and the manufacturing industry is using emerging technologies to automate and synchronize production processes in order to increase productivity and profitability. The results of the study show that incorporating the internet into e-commerce has transformed the process, making it one of the most advanced and high users of digital technology. E-commerce has advanced by leaps and bounds, allowing products and services to flow electronically with minimal delays. Manufacturing has benefited from the implementation of IoT, which has increased the productivity of production processes and is gradually becoming a major beneficiary of modern computer technology.

The Exploratory Study on the Manpower Training Plans by Smart Manufacturing Technology Level (스마트 제조기술 수준에 따른 인력 양성 방안에 대한 탐색적 연구)

  • Choi, Yun-Hyeok;Myung, Jae Kyu
    • Journal of Practical Engineering Education
    • /
    • v.11 no.2
    • /
    • pp.269-282
    • /
    • 2019
  • The purpose of this study is to identify the level of development of major technologies used in smart manufacturing in Korea and to use it as an objective basis for establishing smart manufacturing R & D personnel training policies. We select 25 key technologies to build and operate smart factories for the US, Germany, Japan, EU, Korea, and China, and examine the level (%) and gap (year) by smart manufacturing technology in each country. Based on the results, it is expected to contribute to reinforcing the global market competitiveness of the Korea manufacturing industry by checking the current status of R & D personnel training and suggesting policy suggestions for nurturing R & D personnel.

A Study on Manufacturing Methods of Cocuring Composite Wings of Solar-Powered UAV (복합재 태양광 무인기 날개 일체성형 제작기법 연구)

  • Yang, Yongman;Kwon, Jeongsik;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In order to suggest the optimal manufacturing technology of composite wings of solar-powered unmanned aerial vehicles, this study compared forming technologies to reduce wing weight for long-endurance flight and to improve the manufacturing process for cost-saving and mass production. It compared the manufacturing time and weight of various composite wing molding technologies, including cocuring, secondary bonding, and manufacturing by balsa. As a result, wing weight was reduced through cocuring methods such as band type composite fiber/tape lamination technology, which enabled prolonged flight duration. In addition, the reduced manufacturing time led to a lower cost, which is a good example of weight lightening for not only small solar-powered UAVs, but also composite aircraft.

A Study on Building a Test Bed for Smart Manufacturing Technology (스마트 제조기술을 위한 테스트베드 구축에 관한 연구)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.475-479
    • /
    • 2021
  • There are many difficulties in the applications of smart manufacturing technology in the era of the 4th industrial revolution. In this paper, a test bed was built to aim for acquiring smart manufacturing technology, and the test bed was designed to acquire basic technologies necessary for PLC (Programmable Logic Controller), HMI, Internet of Things (IoT), artificial intelligence (AI) and big data. By building a vehicle maintenance lift that can be easily accessed by the general public, PLC control technology and HMI drawing technology can be acquired, and by using cloud services, workers can respond to emergencies and alarms regardless of time and space. In addition, by managing and monitoring data for smart manufacturing, it is possible to acquire basic technologies necessary for embedded systems, the Internet of Things, artificial intelligence, and big data. It is expected that the improvement of smart manufacturing technology capability according to the results of this study will contribute to the effect of creating added value according to the applications of smart manufacturing technology in the future.

The Integrated Design and Analysis of Manufacturing Lines (I) - an Automated Modeling & Simulation System for Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(I) - 디지털 가상생산 기술 적용을 위한 모델링 & 시뮬레이션 자동화 시스템)

  • Choi, SangSu;Hyeon, Jeongho;Jang, Yong;Lee, Bumgee;Park, Yangho;Kang, HyoungSeok;Jun, Chanmo;Jung, Jinwoo;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.138-147
    • /
    • 2014
  • In manufacturing companies, different types of production have been developed based on diverse production strategies and differentiated technologies. The production systems have become smart, factories are filled with unmanned manufacturing lines, and sustainable manufacturing technologies are under development. Nowadays, the digital manufacturing technology is being adopted and used in manufacturing industries. When this technology is applied, a lot of efforts, time and cost are required and training professionals in-house is limited. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development on virtual environment. This system provides the functions that can be designed easily using library and template based on standardized modules and analyzed automatically the logistic and capacity simulation by one-click and verified the result using visual reports. Also, we can review the factory layout using automatically created 3D virtual factory and increase the knowledge reuse by e-FEED system.