• 제목/요약/키워드: Manufacturing Simulation

검색결과 2,191건 처리시간 0.027초

다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술 (Mold technology with 3D printing for manufacturing of porous implant)

  • 이성희;김미애;윤언경;이원식
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

반도체 FAB 공정의 효율적인 통제를 위한 생산 기준점 산출 알고리듬 (A Milestone Generation Algorithm for Efficient Control of FAB Process in a Semiconductor Factory)

  • 백종관;백준걸;김성식
    • 대한산업공학회지
    • /
    • 제28권4호
    • /
    • pp.415-424
    • /
    • 2002
  • Semiconductor manufacturing has been emerged as a highly competitive but profitable business. Accordingly it becomes very important for semiconductor manufacturing companies to meet customer demands at the right time, in order to keep the leading edge in the world market. However, due-date oriented production is very difficult task because of the complex job flows with highly resource conflicts in fabrication shop called FAB. Due to its cyclic manufacturing feature of products, to be completed, a semiconductor product is processed repeatedly as many times as the number of the product manufacturing cycles in FAB, and FAB processes of individual manufacturing cycles are composed with similar but not identical unit processes. In this paper, we propose a production scheduling and control scheme that is designed specifically for semiconductor scheduling environment (FAB). The proposed scheme consists of three modules: simulation module, cycle due-date estimation module, and dispatching module. The fundamental idea of the scheduler is to introduce the due-date for each cycle of job, with which the complex job flows in FAB can be controlled through a simple scheduling rule such as the minimum slack rule, such that the customer due-dates are maximally satisfied. Through detailed simulation, the performance of a cycle due-date based scheduler has been verified.

균질화 기법을 이용하여 기공이 있는 이차전지 극판의 대표 기계 물성 도출을 위한 연구 (Estimation of Representative Mechanical Property of Porous Electrode for Secondary Batteries with Homogenization Method)

  • 표창민;김재웅
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.85-91
    • /
    • 2022
  • The demand for electric vehicles has increased because of environmental regulations. The lithium-ion battery, the most widely used type of battery in electric vehicles, is composed of a cathode, an anode, and an electrolyte. It is manufactured according to the pole plate, assembly, and formation processes. To improve battery performance and increase manufacturing efficiency, the manufacturing process must be optimized. To do so, simulation can be used to reduce wasted resources and time, and a finite-element method can be utilized. For high simulation quality, it is essential to reflect the material properties of the electrode by considering the pores. However, the material properties of electrodes are difficult to derive through measurement. In this study, the representative volume element method, which is a homogenization method, was applied to estimate the representative material properties of the electrode considering the pores. The representative volume element method assumes that the strain energy before and after the conversion into a representative volume is conserved. The method can be converted into one representative property, even when nonhomogeneous materials are mixed in a unit volume. In this study, the material properties of the electrode considering the pores were derived. The results should be helpful in optimizing the electrode manufacturing process and related element technologies.

디지털트윈 기반의 인더스트리 메타버스 : 사례분석을 통한 프레임워크의 정립 (Establishing the Framework of Industry Metaverse based on Digital Twin through Case Studies)

  • 양경란;윤성철;박수경;이봉규
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1122-1135
    • /
    • 2022
  • With the development of digital technology and the influence of the global pandemic, the metaverse, a three-dimensional virtual world, is receiving attention in society, economy and overall industry, and the manufacturing industry is also accepting it as a major strategic agenda for digital transformation. Therefore, in this study, the concept of the industry metaverse from the perspective of the manufacturing industry was defined, and the types of the industry metaverse were classified into four types by reflecting the characteristics of the manufacturing industry based on the general metaverse scenario presented in previous studies. These are Virtual behavior simulation, Augmented operation of business objects and Virtual experience simulation, Augmented decision of business subjects. In addition, through case analysis of solutions used in the manufacturing industry, it was confirmed that the central technology of the Industry Metaverse is the digital twin, and that it is being implemented by convergence with major digital technologies such as virtual reality, augmented reality, digital human, and AI. This study will be able to provide guidelines for future research on the metaverse from the perspective of the manufacturing industry and establishment of a digital transformation strategy for the industry.

이방성 재료의 충격거동에 관한 시뮬레이션 (Impact Behavior Simulation of Anisotropic Materials)

  • 안국찬;정대식;김봉환
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.38-46
    • /
    • 2011
  • A study was performed to investigate the dynamic behaviors of fiber-reinforced composite materials subjected to transversely low-velocity impact. For this purpose, the simulation of modified beam finite element based on higher order beam theory for two(isotropic and anisotropic) materials is carried out according to the changes of material property, stacking sequence, geometric dimension and impact velocity of steel ball, etc. Main composite materials for simulation are composed of $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_s$ and $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_s$ stacking sequences. The effectiveness of this simulation for qualitative and quantitative evaluations in composite materials subjected to foreign object impact was established.

Decision-Making Problems for Shop Floor Simulation in Discrete Part Manufacturing

  • Jang, Pyoung-Yol
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.1114-1116
    • /
    • 2005
  • Shop floor control systems (SFCS) are used to make real-time planning and scheduling decisions to optimize the efficiency of manufacturing shops. These shops exhibit a non-linear, dynamic evolution caused by 1) the concurrent flows of disparate parts following complex routings, 2) a variety of machines that breakdown at random times, 3) stochastic arrivals of new parts with different priorities, and 4) jobs that have probabilistic processing times and transportation times. Because of their ability to capture that evolution faithfully, simulation models are often used in the aforementioned decisions. In this paper, various types of decision-making problems encountered in a shop floor have been investigated and categorized into process related problems and resource related problems for shop floor simulation.

  • PDF

FACTOR/AIM을 이용한 통합자동 생산시스템의 성능분석을 위한 비교연구 (A Comparative Study of FMS Performance Evaluation Modeling Using FACTOR/AIM)

  • 황흥석
    • 산업공학
    • /
    • 제9권2호
    • /
    • pp.191-202
    • /
    • 1996
  • A variety of approaches on performance evaluation modeling have appeared in the technical literature for flexible manufacturing systems(FMS) which can be evaluated only through computer simulation. This study represents a comparative approach for FMS performance evaluation modeling based on reliability, availability and maintainability, and life cycle cost. The methodology proposed in this research includes the following three-step generative approaches. First, a static model to find the initial system configuration is considered under the assumption that the system availability is given as one (failure and maintenance are not considered), and in second step, a stochastic simulation is proposed to serve as a performance evaluation model for FMS with stochastic failure and repair time. In the last step, we developed a simulation modeling using a simulator, FACTOR/AIM to consider a variety of performance factors and dynamic behavior of FMS. Also the applicability and validity of the proposed approaches has been tested and compared through the results of a sample problem using computer programs and procedures developed in each step.

  • PDF

Web-based Visualization of Forging Operation by Using Virtual Reality Technique

  • Lee, Young-Seok;Hwang, Ho-Jin;Oh, Jea-Woo;Park, Man-Jin;Lee, Tae-Hong;Jang, Dong-Young
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.274-279
    • /
    • 2001
  • This paper presented a virtual manufacturing simulation system by using Virtual Reality Modeling Language (VRML) and Finite Element Method(FEM). The system is to simulate forging operation. Stress distributions and deformation profiles as well as the operation of forging machine can be simulated and visualized in the web. Since the forging machine, user interface, and specimen were modeled by using Java and VRML, the forging machine and analysis results were browsed and integrated on the web that is interfaced to users through EAI to show the whole forging simulation. The developed system realized the working environment virtually so that education and experiment of forging process could be performed effectively even on the PC.

  • PDF

선삭 가공 사이클 단축 시뮬레이션 (Cycle Reduction Simulation for Turning Process)

  • 김선호;조행득;김태호
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2015
  • Productivity of machining using machine tools is affected by cutting conditions such as cutting speed, feedrate and depth. However, undesirable conditions that lengthen the machining cycle and shorten the tool life occur frequently because determination of cutting condition is known to depend on human experience. This paper presents a method of cycle reduction by removing undesirable conditions. For cycle reduction, maximum cutting load is determined using commercial FEM simulation code. The feedrate in the NC program is altered based on a predetermined cutting load value. To make a decision on the proposed effectiveness, a simulation is performed for the brake hub parts of an automobile. From the evaluation, it was found that the cycle reduction was under 15%.

광학렌즈 사출성형금형 설계에 있어서 CAE기술의 활용 (Application of Birefringence CAE in Mould Design of Optic Lens Injection Molding Process)

  • 야마노이 미키오;곽태수;정종교
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2012
  • This study is focused on simulation technology in injection molding process for plastic optic lenses. The CAE program, $3D-TIMON^{TM}$ is used for the injection molding simulation with O-PET resin material. The design for different gate shape and runner layout has been under review by CAE simulation results. Moreover, the prediction of birefringence and polarized light in injection molded optic lenses has been tested by the CAE Program. The simulation results have been expected to effectively use in the design of injection molding mould.