• Title/Summary/Keyword: Manufacturing Parameters

Search Result 1,689, Processing Time 0.027 seconds

Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys (AlSi10Mg 합금분말 크기가 선택적 레이저 용융된 3차원 조형체 특성에 미치는 영향)

  • Eom, Yeong Seong;Kim, Dong Won;Kim, Kyung Tae;Yang, Sang Sun;Choe, Jungho;Son, Injoon;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Aluminum (Al) - based powders have attracted attention as key materials for 3D printing because of their excellent specific mechanical strength, formability, and durability. Although many studies on the fabrication of 3D-printed Al-based alloys have been reported, the influence of the size of raw powder materials on the bulk samples processed by selective laser melting (SLM) has not been fully investigated. In this study, AlSi10Mg powders of 65 ㎛ in average particle size, prepared by a gas atomizing process, are additively manufactured by using an SLM process. AlSi10Mg powders of 45 ㎛ average size are also fabricated into bulk samples in order to compare their properties. The processing parameters of laser power and scan speed are optimized to achieve densified AlSi10Mg alloys. The Vickers hardness value of the bulk sample prepared from 45 ㎛-sized powders is somewhat higher than that of the 65 ㎛m-sized powder. Such differences in hardness are analyzed because the reduction in melt pool size stems from the rapid melting and solidification of small powders, compared to those of coarse powders, during the SLM process. These results show that the size of the powder should be considered in order to achieve optimization of the SLM process.

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Manufacturing Ti-Alloy Frames of Classes with High-Precision Laser Beam Welding (초정밀 레이저용접을 이용한 티타늄 안경테 제조)

  • 황용화;김수성;이형권;민덕기;고진현
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • An attempt was made to develop commercially pure titanium frames of glasses with a high-precision laser beam welding machine, in which a resonator with 12kw of the peak power and 200 W of maximum mean power has the capacity of variable in the range of 0.08~10 ms pulse width. In addition the optical fiber beam transmission with 400 ${\mu}{\textrm}{m}$ of the core diameter and a weld chamber to contain specimens in the inert gas atmosphere were also designed and used. In the present study. titanium frames of glasses parts such as temple plus spring hinge. bridge and top bar were experimentally manufactured by utilizing the optimum welding parameters with the optical fiber of GI 400 ${\mu}{\textrm}{m}$, 2.9J energy per pulse, and focussing position for Tee and butt joints. The titanium welded joints with laser beam welding did not reveal any severe weld defects or weld bead appearance except some pores in the weld section.

  • PDF

Effects of Surface Homogeneity on Optical Properties of Sputter-deposited AlTiO Selective Transmitting Layers (스퍼터 증착으로 형성된 AlTiO 선택적 투과막의 표면 균질성에 따른 광학적 특성)

  • Jeong, So-Un;Lim, Jung-Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Transparent dye-sensitized solar cells have been widely investigated for the application to building integrated photovoltaic system. Thin film Si-based solar cells are emerging as a substitute for the dye-sensitized solar cells because their merits of well-established manufacturing processes. Since the selective transmitting layer transmits visible light and reflects infrared light, the solar cell efficiency increases with the introduction of the selective transmitting layer. In this work, AlTiO thin films were grown as the selective transmitting layer by cost-effective sputter deposition and their transmittances were improved by controlling deposition parameters.

Simulation of Pervaporation Process Through Hollow Fiber Module for Treatment of Reactive Waste Stream from a Phenolic Resin Manufacturing Process (페놀수지 생산공정에서 배출되는 반응성 폐수처리를 위한 중공사막 모듈 투과증발 공정모사)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 2003
  • For the treatment of reactive phenolic resin waste, a simulation model of pervaporative dehydration process has been developed through hollow fiber membrane module. Some of basic parameters were determined directly from dehydration of the waste liquid through a flat sheet membrane to get realistic values. The simulation model was verified by comparing the simulated values with experimental data obtained from hollow fiber membrane module. Hollow fiber membranes with active layer coated on inside fiber were used, and feed flew through inside hollow fiber. Feed flow rate affected membrane performances and reaction by providing a corresponding temperature distribution of feed along with fiber length. Feed temperature is also a crucial factor to determine dehydration and reaction behavior by two competing ways; increasing temperature increases permeation rate as well as water formation rate. Once the permeate pressure is well below the saturated vapor pressure of feed, permeate pressure had a slightly negative effect on permeation performance by slightly reducing driving force. As the pressure approached the vapor pressure of feed, dehydration performances declined considerably due to the activity ratio of feed and permeate.

Improvement of the Throwing Power (TP) and Thickness Uniformity in the Electroless Copper Plating (무전해 동도금 Throwing Power (TP) 및 두께 편차 개선)

  • Seo, Jung-Wook;Lee, Jin-Uk;Won, Yong-Sun
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The process optimization was carried out to improve the throwing power (TP) and the thickness uniformity of the electroless copper (Cu) plating, which plays a seed layer for the subsequent electroplating. The DOE (design of experiment) was employed to screen key factors out of all available operation parameters to influence the TP and thickness uniformity the most. It turned out that higher Cu ion concentration and lower plating temperature are advantageous to accomplish uniform via filling and they are accounted for based on the surface reactivity. To visualize what occurred experimentally and evaluate the phenomena qualitatively, the kinetic Monte Carlo (MC) simulation was introduced. The combination of neatly designed experiments by DOE and supporting theoretical simulation is believed to be inspiring in solving similar kinds of problems in the relevant field.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.