• Title/Summary/Keyword: Manufacturing Assessment

Search Result 571, Processing Time 0.035 seconds

A Structural Analysis of the Factors Affecting Productivity Performance: Based on SME of Manufacturing Certified the PMS (중소기업의 생산성 성과 요인에 관한 구조적 분석: 생산성경영시스템(PMS) 인증 제조업을 중심으로)

  • Seo, Chang Soo;An, Oak Hyeon
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.2
    • /
    • pp.295-314
    • /
    • 2019
  • Purpose: This study aims to investigate the factors affecting productivity performance for Korean SMEs of manufacturing which had obtained the certification of Productivity Management System(PMS) that is a Korean assessment program for enhancing maturity of company's management systems. Methods: The proposed model is based on the PMS model. The valid 759 data registered from 2010 to 2018 year was analyzed using SEM analysis for testing hypotheses. Results: The results are as follows. First, Leadership affects the five core sub-system processes positively, but doesn't a significant Business Performance directly. Secondly, HRM, Customer & Market Analysis, and Process Management excluding Productivity Development and Measurement Analysis and Knowledge Management have a significant effect on Business Performance. Lastly, when examining the mediation effect, Process Development, Customer & Market Analysis, and HRM have indirectly effect between Leadership and Business Performance. Conclusion: This study results suggest not only the role of leadership to improve productivity performance of SME, but also which core processes are focused and differentiated.

Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation (작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가)

  • Yun, Jang-Woo;Kim, Sang-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.

On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.261-275
    • /
    • 2019
  • The main objective of this paper is to study the axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets (GSs) under in-plane loading in the theoretical framework of the nonlocal strain gradient theory. To begin with, a graphene sheet is modeled by a two-dimensional plate subjected to simply supported ends, and supposed to have a small initial curvature. Then according to the Hamilton's principle, the nonlinear governing equations are derived with the aid of the classical plate theory and the von-karman nonlinearity theory. Subsequently, for providing a more accurate physical assessment with respect to the influence of respective parameters on the mechanical performances, the approximate analytical solutions are acquired via using a two-step perturbation method. Finally, the authors perform a detailed parametric study based on the solutions, including geometric imperfection, nonlocal parameters, strain gradient parameters and wave mode numbers, and then reaching a significant conclusion that both the size-dependent effect and a geometrical imperfection can't be ignored in analyzing GSs.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Study on the Evaluation of Skill Level for Aircraft Body Assembly Workers (항공기 기체 조립 작업자 숙련도 평가 연구)

  • Hyoung Geun Kwon;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.535-546
    • /
    • 2024
  • This research aims to develop a model to objectively and quantitatively measure the skill level of aircraft body assembly workers. Because aircraft body assembly is predominantly a manual process, skills management is a key factor of manufacturing competitiveness. Currently, skills management relies on the subjective judgment of supervisors, which lacks objectivity and reliability. As a remedy, this study proposed a systematic skill management model based on objective and quantitative evaluation criteria. By considering prior research, we developed an evaluation model that takes into account both expertise and versatility of a worker. The model selected five major tasks required for aircraft body assembly and established evaluation criteria considering the difficulty and maturity of each task. We then conducted a pilot evaluation with over 200 workers in four SMEs to validate the practicality and effectiveness of the model. Consequently, we identified and addressed the limitations of the existing evaluation method, subdivided the skill levels based on the performance capabilities of each task, and proposed a career growth path. The developed evaluation model offers critical data for executives and managers to determine work assignments, education, training, performance incentives, and wages. It is expected to enhance the attraction of new talent and systematize skills management in aviation manufacturing in the future.

Life Cycle Assessment of Steel Box Girder Bridge (강교량구조물의 환경적합성에 관한 전과정평가)

  • Kim, Sang-Hyo;Choi, Moon-Seock;Cho, Kwang-Il;Yoon, Ji-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.269-278
    • /
    • 2011
  • Recently, methods on minimizing environmental effect caused from human-made goods have been studied in various research fields. Such issue has been also spotlighted into the civil engineering field; however, application of environmental performance assessment on civil structures is very complicated, since they handles vast ranges of materials and has comparatively long life span with various construction stages. Thus, this study intended to apply environmental performance assessment into an ordinary type of steel box girder bridge, using most popular Life cycle assessment (LCA) procedures, which are called Survey-based method and Indirect method. For better comparison of two methods, greenhouse effect of the example bridge is considered. As result of analysis, total $CO_2$ emission is evaluated as 241.27 ton with Survey-based method while it is evaluated as 221.03 ton with Indirect method. It is also revealed that most $CO_2$ is generated from the process of manufacturing and producing construction materials. Such result indicates that the efficient design which secures certain level of structural safety with minimized input materials. It is considered that the specific LCA on civil structure performed in this study could be utilized to other civil structures for reasonable environmental performance assessment.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

Estimation of GHG emission and potential reduction on the campus by LEAP Model (LEAP 모델을 이용한 대학의 온실가스 배출량 및 감축잠재량 분석)

  • Woo, Jeong-Ho;Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.409-415
    • /
    • 2012
  • Post-kyoto regime has been discussing with the GHG reduction commitment. GHG energy target management system also has been applied for the domestic measures in the country. Universities are major emission sources for GHG. It is very important for campus to built the GHG inventory system and estimate the potential GHG emission reduction. In general, GHG inventory on the campus was taken by the IPCC guidance with the classification of scope 1, 2, and 3. Electricity was the highest portion of GHG emission on the campus as 5,053.90 $tonsCO_2eq/yr$ in 2009. Manufacturing sector was the second high emission and meant GHG in laboratory. Potential GHG reduction was planned by several assumptions such as installation of occupancy sensor, exchanging LED lamp and photovoltaic power generation. These reduction scenarios was simulated by LEAP model. In 2020, outlook of GHG emission was estimated by 17,435.98 tons of $CO_2$ without any plans of reduction. If the reduction scenarios was applied in 2020, GHG emission would be 16,507.60 tons of $CO_2$ as 5.3% potential reduction.

Spectroscopic Techniques for Nondestructive Quality Inspection of Pharmaceutical Products: A Review

  • Kandpal, Lalit Mohan;Park, Eunsoo;Tewari, Jagdish;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.394-408
    • /
    • 2015
  • Spectroscopy is an emerging technology for the quality assessment of pharmaceutical samples, from tablet manufacturing to final quality assurance. The traditional methods for the quality management of pharmaceutical tablets are time consuming and destructive, while spectroscopic techniques allow rapid analysis in a non-destructive manner. The advantage of spectroscopy is that it collects both spatial and spectral information (called hyperspectral imaging), which is useful for the chemical imaging of pharmaceutical samples. These chemical images provide both qualitative and quantitative information on tablet samples. In the pharmaceutics, spectroscopic techniques are used for a variety of applications, such as analysis of the homogeneity of powder samples as well as determination of particle size, product composition, and the concentration, uniformity, and distribution of the active pharmaceutical ingredient in solid tablets. This review paper presents an introduction to the applications of various spectroscopic techniques such as hyperspectroscopy and vibrational spectroscopies (Raman spectroscopy, FT-NIR, and IR spectroscopy) for the quality and safety assessment of pharmaceutical solid dosage forms. In addition, various chemometric techniques that are highly essential for analyzing the spectroscopic data of pharmaceutical samples are also reviewed.

Reliability Allocation for KTX Door System (KTX 승강문 시스템의 신뢰도 배분)

  • Jang, Mu-Seong;Choi, Byung Oh;Lee, Jeong Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1179-1184
    • /
    • 2014
  • Reliability allocation is generally used during the early stage of system development to apportion the system reliability target to its individual modules. This paper presents a comprehensive method for performing the reliability allocation of KTX door systems. Nine criteria for reliability allocation include failure criticality, operating time, risk, complexity, failure rate, maintenance, manufacturing technology, working condition, and reliability cost. For satisfying the system reliability target, the allocated $B_{10}$ lives of four modules are provided.