• Title/Summary/Keyword: Manual probe

Search Result 28, Processing Time 0.028 seconds

Clinical Comparison Of Manual Probe With Florida Probe In Adult Periodontitis (성인형 치주염 환자에 있어 manual probe의 Florida probe의 임상적 비교)

  • Yu, Hyang-Mi;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • The periodontal probe is a commonly used instrument to assess periodontal conditions. And so, there has been many studies to develop the accuracy and reproducibility of the periodontal probe. The purpose of this study was to compare two different periodontal probes for measurement reliability and time required to use in subjects with moderate periodontitis. It was done after evaluating reproducibility of probing depth by stent guiding for a Manual probe and a Florida probe in subjects with healthy periodontal condition. The results were as follows 1. In experiment to evaluate the reproducibility of probing depth by stent guiding for a Manual probe and Florida probe in subjects with healthy periodontal condition, there was no major significant difference between intraprobe and interprobe relationships. 2. There were reduced probing measuremint error by using the Florida probe for posterior teeth and by using the Manual probe for anterior teeth of subjects with moderate periodontitis. 3. At proximal area, there was higher measurement error by using the Manual probe than the Florida probe. 4. The mean of pocket depth measurement using Manual probe was signifi cantly higher than that using Florida probe(p<0.05). With increasing pocket depth, interprobe difference increased and reproducibility reduced. 5. There was no significant difference in time required to use between Manual probe and Florida probe(p<0.05). 6. There was slight probing measurement difference between Manual probe and Florida probe at different site, but both probes have similar degrees of reproducibility and similar time required to probe.

  • PDF

Performance Characteristics of an Inductively Coupled Magnetic Probe Developed for Off-line Monitoring of a Rotating Machine (발전기 정지중 진단을 위하여 개발된 유도결합 마그네틱 프로브의 성능특성)

  • Park, Noh-Joon;Yang, Sang-Hyun;Kong, Tae-Sik;Kim, Hee-Dong;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.46-46
    • /
    • 2010
  • In order to detect exact corona discharge point at stator winding of a rotating machine, an inductively coupled magnetic probe has been developed, which consists of U-shaped and truncated manganese ferrite inductor as a helix. The measured current intensity is somewhat higher than commercially developed probe. It has been shown that the measured intensity of proposed probe is suitable for manual localization as to off-line stator winding monitoring of rotating machine.

  • PDF

The Development of 3D based On-Machine Measurement Operating System (3D 기반의 기상측정 운영시스템 개발)

  • 윤길상;최진화;조명우;김찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.145-152
    • /
    • 2004
  • This paper proposed efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software based 3D modeler for inspection on machine and it is interfaced tool machine with RS232C. The software is composed of two inspection modules that one is touch probe operating module and the other is laser displacement sensor operating module. The module for touch probe has need of inspection feature that extracted it from CAD data. Touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of laser displacement sensor is used inspection for profile and very small hole. An Advantage of this inspection method is to be able to execute on-line inspection during machining or after it. The efficiency of proposed system which can predict and definite the machining errors of each process is verified, so the developed system is applied to inspect the mold-base(cavity, core).

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

Recent Development of In-hole Seismic Method for Measuring Dynamic Stiffness of Subsurface Materials (지반의 동적물성치 측정을 위한 인홀탄성파시험의 최근 발전)

  • Mok Young-Jin;Jung Jin-Hun;Kim Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.105-114
    • /
    • 2005
  • An in-hole seismic method, which has been developed for measuring dynamic properties of subsurface materials, was improved in terms of cost effectiveness and practicality. The upgraded features include the motorized triggering system rather than the manual prototype version in the previous studies and a connecting rod between source and receiver in the module. The probe, thus, can be used for the field measurements of soil properties as well as those of rocks. The performance of the probe has been evaluated through extensive cross-hole tests and in-hole tests at various sites.

Allosteric Probe-Based Colorimetric Assay for Direct Identification and Sensitive Analysis of Methicillin Resistance of Staphylococcus aureus

  • Juan Chu;Xiaoqin Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.681-688
    • /
    • 2024
  • The accurate and rapid detection of methicillin-resistance of Staphylococcus aureus (SA) holds significant clinical importance. However, the methicillin-resistance detection strategies commonly require complicated cell lysis and gene extraction. Herein, we devised a novel colorimetric approach for the sensitive and accurate identification of methicillin-resistance of SA by combining allosteric probe-based target recognition with self-primer elongation-based target recycling. The PBP2a aptamer in the allosteric probe successfully identified the target MRSA, leading to the initiation of self-primer elongation based-cascade signal amplification. The peroxidase-like hemin/G-quadruplex undergo an isothermal autonomous process that effectively catalyzes the oxidation of ABTS2- and produces a distinct blue color, enabling the visual identification of MRSA at low concentrations. The method offers a shorter duration for bacteria cultivation compared to traditional susceptibility testing methods, as well as simplified manual procedures for gene analysis. The overall amplification time for this test is 60 min, and it has a detection limit of 3 CFU/ml. In addition, the approach has exceptional selectivity and reproducibility, demonstrating commendable performance when tested with real samples. Due to its advantages, this colorimetric assay exhibits considerable potential for integration into a sensor kit, thereby offering a viable and convenient alternative for the prompt and on-site detection of MRSA in patients with skin and soft tissue infections.

Detection of Pneumocvstis carinii by in situ hybridization in the lungs of immunosuppressed rats (면역억제 흰쥐에서 조직내교잡법을 이용한 페포자충의 검출)

  • Jin KIM;Jae-Ran YU;Sung-Tae HONG;Chang-Soo PARK
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.3
    • /
    • pp.177-184
    • /
    • 1996
  • In situ hybridization was performed to detect rat heumocwstis ca4nii in the lung sections. Rats were immunosuppressed by weekly subcutaneous injection of 10 mg/kg methylprednisolone. On the 6th, 8th and 9th week of immunosuppression, the lungs were removed and fled in 10% neutral formalin. A 22 base oligonucleotide probe complementary to p. carinii 5S ribosomal RMh was commercially synhesized and its 3' terminal was labeled wiH biotin. In situ hybridization was performed utilizing manual capillary action technolog)r on the Microprobe system. p. cnrinii were detected along the luminal surface of alveolar pneumocytes, in exudate of alveolar cavities, and also in secretory material of bronchioles. In the 6th week group, positive reaction was observed focally in the peripheral region of the lung sections, but the reaction was observed diffusely in the 8th or 9th week groups. In comparison with Grocott's methenamine silver stain, in situ hybridization technique can detect the organism rapidly, and can detect trophic forms very well. Furthermore, no nonspecific reaction with other pathogenic fungi and protozoa was recognized. Therefore, in situ hybridization can be a good technique to detect p. carinii in the lungs of infected rats.

  • PDF

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.