• Title/Summary/Keyword: Manual materials handling task

Search Result 15, Processing Time 0.023 seconds

An Ergonomic Study on the Work Loads of Manual Workers (현장근로자의 생체부하에 관한 인간공학적 연구)

  • 이상도;우동필
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.174-180
    • /
    • 1999
  • The objective of this study was to investigate the effects of carrying postures and weight of load carried one time on a worker when carrying heavy loads. Six male students participated in this study to perform a manual materials carrying task as subjects. To make comparison of work loads with physical work capacity, maximal oxygen uptake measurement tests were performed with submaximal test. The average oxygen consumption for the tasks of this study was 27.59~31.93% $VO_2$max. The results showed that the weight of load carried one time affects on working heart rate and oxygen consumption($VO_2$). It was found that the workload was significantly lower when handling a 20kg load at a frequency rate of 3times/min than when handling a 40kg load at a frequency rate of 1.5 times/min. There was no difference between carrying postures. It is concluded from the results of this study that the workload can be reduced by controlling conditions of a manual materials handling task.

  • PDF

The Study of the Influence of Intra-Abdominal Pressure to Manual Materials Handling

  • Woo, Tsun-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.90-98
    • /
    • 2008
  • This research selects the lifting task to be the main subject. Four experiments were designed to measure which among lifting postures, lifting heights, waist-belt, and breathing control significantly influences intra-abdominal pressure (Gallagher, 1991; Lavender, Andersson and Natarajan, 1999). The experimental results were taken to be the recommendations of the manual materials handling work design. The research findings reveal that the symmetrical stoop posture is the most significant to the intra-abdominal pressure within all lifting postures. When the lifting height is increased, the intra-abdominal pressure produced relatively goes up. Also, the combination of symmetrical stoop posture, waist-belt use, and inspiration and holding at the same time is the most efficient in carrying out lifting tasks. Simultaneously, the research discovers that for any posture, the volume of the intra-abdominal pressure is much bigger when using the waist-belt compared to when it is not used. Therefore, the waist-belt design for the lifting works might be the future research approach.

Effects of Material Position on Postural Stability during Manual Material Handling Tasks (인력물자취급작업시 작업 대상물의 위치가 신체자세동요에 미치는 영향)

  • Park, Jae-Gyu;Park, Seong-Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The objective of this study is to identify the effects of material position and physical fatigue on postural stability. Ten male subjects participated in this study. After bicycling exercises, their centers of pressure (COPs) were measured under four material handling positions and four excercise levels. The measured COPs were then utilized to calculate postural sway length in each experimental condition. Subjects' postural stability was quantified using the sway length. Results showed that the effect of different material handling position was significant on the postural sway length in both the posterior-anterior axis and the medio-lateral axis. Results also showed that the postural sway length was increased as physical fatigue accumulated, significantly in subject's posterior-anterior axis. The results imply that bearing a material on the back or front with both hands appeared to cause least sway length and instability.

A Study of Maximum Voluntary Strength Evaluation for Korean Workers (한국근로자의 임의적 최대근력 평가를 위한 연구)

  • Chung, Min-Keun;Kee, Do-Hyung;Kim, Tae-Bok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.141-153
    • /
    • 1992
  • In order to evaluate task loads required by a majority of manual materials handling(MMH) jobs, we have performed the assessment of arm strength, leg strength and torso strength for Korean workers in a scientific and systematic manner. Two hundred and eighty five employees from two local manufacturing plants in Pohang participated in this project. Maximum voluntary strengths were assessed for the aforementioned three postures, and these data were classified by gender. These strength data were also used to generate a strength predicition model, which can estimate the maximum voluntary strength for a population with specific age, height and weight. These strength data will be used for the prevention of occupational injuries which are frequently incurred by overexertion in manual materials handling jobs.

  • PDF

Workload Measurement of Lifting Task by Lifting Index Simulator

  • Kim, Dae-Sik;Kang, Kyong-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.93-102
    • /
    • 2000
  • Today, the number of automated machine has rapidly increased in industrial workplaces. Nevertheless, workers are often required to handle materials manually. Technical information for using the revised NIOSH lifting equation to evaluate a variety of two - handed Manual Material Handling (MMH) tasks was investigated. The NIOSH suggested the Lifting Index that provides a relative estimate of the level of physical stress associated with a particular manual lifting task. To measure operator's workload in lifting task, Lifting Index Simulator(LIS) was developed based upon the revised NIOSH lifting equation in this study. The purpose of this study was to develop LIS and use the NIOSH lifting equation in our workplace.

  • PDF

Biomechanical Analysis on Dynamic Back Loading Related with Low Back Disorders with Toggle Tasks in Leather Industry Low back (피혁제조 공정 중 토글 작업에서 요통과 관련된 요추 부하의 생체역학적 분석과 개선 방안)

  • Kim, Kyoo Sang;Hong, Chang-Woo;Lee, Dong Kyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Low back disorders (LBDs) have been the most common musculoskeletal problem in Korean workplaces. It affects many workers, and is associated with high costs to many companies as well as the individual, which can negatively influence even the quality of life of workers. The _evaluation of low back disorder risk associated with manual materials handling tasks can be performed using variety of ergonomic assessment tools such as National Institute for Occupational Safety and Health (NIOSH) Revised Lifting Equation (NLE), the Washington Administrative Code 296-62-0517 (WAC), the Snook Tables etc. But most of these tools provide limited information for choosing the most appropriate assessment method for a particular job and in finding out advantage and disadvantage of the methods, and few have been assessed for their predictive ability. The focus of this study was to _evaluate spinal loads in real time with lifting and pulling heavy cow leathers in variety of postures. Data for estimating mean trunk motions were collected as employees did their work at the job site, using the Lumbar Motion Monitor. Eight employees (2 males, 6 females) were selected in this study, in which the load weight and the vertical start and destination heights of the activity remained constant throughout the task. Variance components (three dimensional spaces) of mean trunk kinematic measures were estimated in a hierarchical design. They were used to compute velocity and acceleration of multiple employees performing the same task and to repetitive movements within a task. Therefore, a results of this study could be used as a quantitative, objective measure to design the workplace so that the risk of occupationally related low back disorder should be minimized.

An Analysis of Stress on Foot by Lifting Height and Angle (들기 작업에서 높이와 각도 변화가 발 부위에 미치는 스트레스에 관한 연구)

  • Yeo, Min-Woo;Lee, Sang-Do;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.17-24
    • /
    • 2006
  • In this paper, we propose a stress analysis on foot by lifting task attitudes. Maximum force and peak pressure were measured on 8 body regions by Pedar system in order to analysis the stress which is affected by task style and angle on foot when Manual Materials Handling task. As for the peak pressure of the whole foot as to the task height during the lifting task, the height from Knuckle to Shoulder was the least in the peak pressure. Also, as for the maximum force and the peak pressure of the whole foot as to the task angle during the lifting task, it could be seen that the more an angle increases, the stress influencing on a foot jumps. As for the maximum force and the peak pressure by foot region as to the task height in case of the lifting task, the height from Knuckle to Shoulder is indicated the smallest value in the maximum force and the peak pressure, thus there is necessary to attain the work design that considered this. Also, as for the maximum force by foot region as to the task angle in case of the lifting task, 0° tasking is indicated to be least, thus there is necessity to be attained the tasking design in a bid to prevent the existence of an angle. The results of this paper are thought to be helpful to the suitable work design, to the prevention of musculoskeletal disorders related to the lower limbs, and to the design of ergonomic safety shoes.

Comparison of Compressive Forces on Low Back(L5/S1) for One-hand Lifting and Two-hands Lifting Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.597-603
    • /
    • 2011
  • Objective: The objective of this study was to compare one-hand and two-hands lifting activity in terms of biomechanical stress for the range of lifting heights from 10cm above floor level to knuckle height. Background: Even though two-hands lifting activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lifting tasks using both a one-handed as well as a two-handed lifting technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lifting tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lifting tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 43%, as the workload was increased twice from 7.5kg to 15.0kg. For the right-hand lifting task, these were increased by the average 34%. For the two-hands lifting tasks, these were increased by the average 25%. The lateral shear forces at L5/S1 of one-hand lifting tasks, notwithstanding the half of the workload of two-hands lifting tasks, were very high in the 300~317% of the one of two-hands lifting tasks. The moments at L5/S1 of one-hand lifting tasks were 126~166% of the one of two-hands lifting tasks. Conclusion: It is concluded that the effect of workload for one-hand lifting is greater than two-hands lifting. It can also be concluded that asymmetrical effect of one-hand lifting is much greater than workload effect. Application: The results of this study can be used to provide guidelines of recommended safe weights for tasks involved in one-hand lifting activity.

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.