• Title/Summary/Keyword: Manson-Coffin

Search Result 51, Processing Time 0.024 seconds

Low Cycle Fatigue Life Assessment of Alloy 617 Weldments at 900℃ by Coffin-Manson and Strain Energy Density-Based Models

  • Rando, Tungga Dewa;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • This work aims to investigate on the low cycle fatigue life assessment, which is adopted on the strain-life relationship, or better known as the Coffin-Manson relationship, and also the strain energy density-based model. The low cycle fatigue test results of Alloy 617 weldments under $900^{\circ}C$ have been statistically estimated through the Coffin-Manson relationship according to the provided strain profile. In addition, the strain energy density-based model is proposed to represent the energy dissipated per cycle as fatigue damage parameter. Based on the results, Alloy 617 weldments followed the Coffin-Manson relationship and strain energy density-based model well, and they were compatible with the experimental data. The predicted lives based on these two proposed models were examined with the experimental data to select a proper life prediction parameter.

Analysis of reliability test results of low-pass filter assembly (저역필터 어셈블리에 대한 신뢰성시험 결과의 해석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Thermal shock tests at two stress levels were performed to see the life (cycles) of LPF ASSY (low pass filter assembly) at normal stress level. In this case Coffin-Manson relationship is generally used to describe the relationship between the temperature difference and the life, together with the Weibull distribution describing the life at each stress level. So for given data Coffin-Manson is fitted to predict the life at normal stress level. However, different types of models are appropriate for this type of test. Hence, a more appropriate model such as General log-linear model which can also incorporate the duration at the highest and lowest temperatures and acceleration time will be introduced.

An Example of Modification of Design Validation Test Specification to Reduce the Environmental Durability Test Time of Electronic Control Unit for Motor-Driven Power Steering system (전동식 조향 장치용 ECU 의 환경 내구 시험 시간 단축을 위한 설계 검증 시험 사양 변경 사례)

  • Kim, Tae-Hun;Kang, Dong-Young;Chung, In-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1309-1313
    • /
    • 2008
  • This paper suggests an example of modification of the durability test specifications of electronic control unit for an automotive system in phase of design validation. The basic concept to redefine the specifications of durability test is based on the Arrhenius relationship for accelerated temperature test and the modified Coffin-Manson model for temperature cycle test. The ambient temperature of the powered-event durability test is increased to reduce the required test time of the current specification. Furthermore, the holding time between the events to cool down the temperature of the components is shortened and the resultant temperature rise affects the durability of the components. Thus, the acceleration factor due to the increased temperature range of temperature cycle is also estimated by the modified Coffin-Manson model.

  • PDF

소성변형률 이론에 기초를 둔 파손확률모델을 이용한 솔더 조인트의 건전성 평가

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.49-49
    • /
    • 2004
  • 고도화로 정밀해진 현대 과학기기에는 여러 가지 전자 팩키징 제품들이 쓰이고 있으나 이 제품들은 여러 가지 파손인자들의 영향 때문에 고유의 수명을 다하지 못하고 고장이 발생하게 된다. 전자부품 실장에 이용되는 솔더 조인트의 열화에 관련되는 열 피로와 이온 마이그레이션(Migration) 현상이 솔더 조인트의 신뢰성에 영향을 미치는 가장 중요한 인자로 알려져 있고 이러한 인자 이외에도 여러 가지 요인들이 복합적으로 작용하여 솔더의 접합부분에 피로파괴를 일으킨다.(중략)

  • PDF

Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method (변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측)

  • Kim, Duck-Hoi;Kim, Ki-Gwang;Kim, Jae-Hoon;Lee, Young-Shin;Park, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

Fatigue life curves of alloy 617 in the temperature range of 800-950℃

  • Injin Sah;Jaehwan Park;Eung-Seon Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.546-554
    • /
    • 2023
  • The cyclical behavior of Alloy 617 was examined at 25 ℃ and high temperatures of 800, 850, 900, and 950 ℃ in air to obtain its fatigue life curves. The specimens tested at 25, 800, and 850 ℃ cyclically hardened, whereas those tested above 900 ℃ cyclically softened from the first cycle, that is, their fatigue life was reduced at high temperatures owing to loss of strength. Parameters of the typical Coffin-Manson-Basquin relationship were determined for each test temperature. Interestingly, no significant difference in fatigue life was observed for the specimens tested in the range of 800-950 ℃. Owing to the similarity in fatigue life, we determined fatigue strength and fatigue ductility exponents that could be applied for this temperature range. The parameters obtained were close to the universal slopes, although the fatigue ductility exponent was slightly different. The proposed fatigue life curves were compared with those presented in ASME code.

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

Lifetime Estimation of a Bluetooth Module using Accelerated Life Testing (가속수명시험을 이용한 블루투스 모듈의 수명 예측)

  • Son, Young-Kap;Chang, Seog-Weon;Kim, Jae-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • This paper shows quantitative reliability evaluations of a Bluetooth module through extending previous qualitative methods limited to structure reliability tests and solder joint reliability tests for Bluetooth modules. Accelerated Life Testing (ALT) of the modules using temperature difference in temperature cycling as an accelerated stress was conducted for quantitative reliability evaluation under field environment conditions. Lifetime distribution parameters were estimated using the failure times obtained through the ALT, and then Coffin-Manson model was implemented. Results of the ALT showed that the failure mode of the modules was open and the failure mechanisms are both crack and delamination. The ALT reproduced the failure mode and mechanisms of failed Bluetooth modules collected from the field. Further, a quantitative reliability evaluation method with respect to various temperature differences in temperature cycling was proposed in this paper. $B_{10}$ lifetime of the module for the temperature difference $70^{\circ}C$ using the proposed method would be estimated as about 4 years.

  • PDF

Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading (저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가)

  • Dewa, Rando Tungga;Kim, Seon-Jin;Kim, Woo-Gon;Kim, Min-Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.