• Title/Summary/Keyword: Mann iterative sequence with errors

Search Result 4, Processing Time 0.014 seconds

MODIFIED ISHIKAWA ITERATIVE SEQUENCES WITH ERRORS FOR ASYMPTOTICALLY SET-VALUED PSEUCOCONTRACTIVE MAPPINGS IN BANACH SPACES

  • Kim, Jong-Kyu;Nam, Young-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.847-860
    • /
    • 2006
  • In this paper, some new convergence theorems of the modified Ishikawa and Mann iterative sequences with errors for asymptotically set-valued pseudocontractive mappings in uniformly smooth Banach spaces are given.

THE CONVERGENCE THEOREMS FOR COMMON FIXED POINTS OF UNIFORMLY L-LIPSCHITZIAN ASYMPTOTICALLY Φ-PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.295-305
    • /
    • 2010
  • In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Finally, we obtain the convergence theorems of Ishikawa iterative sequence and the modified Ishikawa iterative process with errors.

ISHIKAWA AND MANN ITERATIVE PROCESSES WITH ERRORS FOR NONLINEAR $\Phi$-STRONGLY QUASI-ACCRETIVE MAPPINGS IN NORMED LINEAR SPACES

  • Zhou, H.Y.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1061-1073
    • /
    • 1999
  • Let X be a real normed linear space. Let T : D(T) ⊂ X \longrightarrow X be a uniformly continuous and ∮-strongly quasi-accretive mapping. Let {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} be two real sequences in [0, 1] satisfying the following conditions: (ⅰ) ${\alpha}$n \longrightarrow0, ${\beta}$n \longrightarrow0, as n \longrightarrow$\infty$ (ⅱ) {{{{ SUM from { { n}=0} to inf }}}} ${\alpha}$=$\infty$. Set Sx=x-Tx for all x $\in$D(T). Assume that {u}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and {v}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} are two sequences in D(T) satisfying {{{{ SUM from { { n}=0} to inf }}}}∥un∥<$\infty$ and vn\longrightarrow0 as n\longrightarrow$\infty$. Suppose that, for any given x0$\in$X, the Ishikawa type iteration sequence {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} with errors defined by (IS)1 xn+1=(1-${\alpha}$n)xn+${\alpha}$nSyn+un, yn=(1-${\beta}$n)x+${\beta}$nSxn+vn for all n=0, 1, 2 … is well-defined. we prove that {xn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} converges strongly to the unique zero of T if and only if {Syn}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} is bounded. Several related results deal with iterative approximations of fixed points of ∮-hemicontractions by the ishikawa iteration with errors in a normed linear space. Certain conditions on the iterative parameters {${\alpha}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} , {${\beta}$n}{{{{ { }`_{n=0 } ^{$\infty$ } }}}} and t are also given which guarantee the strong convergence of the iteration processes.

  • PDF