• Title/Summary/Keyword: Manipulators

Search Result 765, Processing Time 0.02 seconds

A Study on Real Time Working Path Control of Vertical Articulated Robot for Forging Process Automation in High Temperature Environments (고온 환경 단조공정 자동화를 위한 수직다관절 로봇의 실시간 작업경로 제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Do, Ki-Hoon;Han, Sung-Hyun;Ha, Un-Tae;Shim, Hyun-Suk;Lim, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.34-48
    • /
    • 2017
  • This study proposes a new approach to control a trajectory control of vertical type articulated robot arm with six revolution joints by computed torque method for manufacturing process automation. The proposed control scheme takes advantage of the properties of the fuzzy controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator for forging manufacturing process automation. The results is illustrated that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. This study is included with an analytical methodology of inverse kinematic computation for 6 DOF manipulators. And an intelligent PID based on feed forward fuzzy control structure is applied to control the working path control with disturbances caused by uncertainty parameters of the manipulator dynamic model. Lastly, the validity of proposed is verified by simulations and experiments.

Design of 6 DOF Mechanism with Flexure Joints for telecommunication mirror and Experimental Stiffness Modeling (탄성힌지를 이용한 초정밀 통신용 미러 구동 6축 메커니즘 구현과 실험적 강성 모델링)

  • Kang, Byoung Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.169-174
    • /
    • 2019
  • Flexure joints are recently used in the ultra-precision mechanism for a telecommunication mirror stage. Flexure joints have several advantages coming from their monolithic characteristics. They can be used to reduce the size of manipulators or to increase the precision of motion. In our research, 6 dof(degree of freedom) mechanism is suggested for micrometer repeatability using a flexure mechanism. To design the 6-dof motion, the 2-dof planar mechanism are designed and assembled to make the 6-dof motion. To achieve a certain performance, it is necessary to define the performance of mechanism that quantifies the characteristics of flexure joints. This paper addresses the analysis and design of the 6-dof parallel manipulator with a flexure joint using a finite element analysis tool. To obtain experimental result, CCD laser displacement sensor is used for the total displacement and the stiffness for the 6-dof flexure mechanism.

Study on Real Time Control of Robot Manipulator Using Sliding Mode (슬라이딩 모드를 이용한 로보트 매니퓰레이터의 실시간 제어에 관한 연구)

  • ;靑島伸治
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2011-2020
    • /
    • 1992
  • This paper discusses about real time control applying sliding mode to robot manipulators whose nonlinear terms, which are inertia term, Corilis term and centrifugal force mterm, are regarded as disturbances. We could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that non-linear terms are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode. We proposed a new control input algorithm to decrease chattering in the application of sliding mode control of manipulator whose nonlinear elements are regarded as disturbances. We could take impulse response of linear elements of dynamic equations of a robot manipulator and servo system by Signal Compression Method. So then, we could obtain the unknown parametes of its linear lements, which are used to obtain switching parameter satisfying sliding mode, by Signal Compression Method. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by obtaining a switching speed and to carry out real time control.

Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors

  • Gao, Zhiyuan;Huang, Jiaqi;Miao, Zhonghua;Zhu, Xiaojin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.559-567
    • /
    • 2020
  • Vibration at the tip of various flexible manipulators may affect their operation accuracy and work efficiency. To suppress such vibrations, the feasibility of using MFC actuators and sensors is investigated in this paper. Considering the convergence of the famous filtered-x least mean square (FXLMS) algorithm could not be guaranteed while it is employed for vibration suppression of plants with varying secondary path, this paper proposes a new multiple model switching adaptive control algorithm to implement the real time active vibration suppression tests with a new multiple switching strategy. The new switching strategy is based on a cost function with reconstructed error signal and disturbance signal instead of the error signal from the error sensor. And from a robustness perspective, a new variable step-size sign algorithm (VSSA) based FXLMS algorithm is proposed to improve the convergence rate. A cantilever beam with varying tip mass is employed as flexible manipulator model. MFC layers are attached on both sides of it as sensors and actuators. A co-simulation platform was built using ADAMS and MATLAB to test the feasibility of the proposed algorithms. And an experimental platform was constructed to verify the effectiveness of MFC actuators and sensors and the real-time vibration control performance. Simulation and experiment results show that the proposed FXLMS algorithm based multiple model adaptive control approach has good convergence performance under varying load conditions for the flexible cantilever beam, and the proposed FX-VSSA-LMS algorithm based multiple model adaptive control algorithm has the best vibration suppression performance.

Decentralized Adaptive Control Scheme for Magnetically Levitated Fine Manipulators (자기부상식 미세구동기의 비집중 적응제어기법)

  • Shin, Eun-Joo;Song, Tae-Seung;Ryu, Joon;Choi, Kee-Bong
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.250-258
    • /
    • 1999
  • This paper presents a decentralized adaptive controller design for a Magnetically Levitated Fine Manipulator to follow the given trajectory as close as possible in spite of coupling effects between motion axes(degree of freedoms or subsystems). The present controller consists of two parts: the model reference controls based on known subsystems and the local adaptive controls. The former stabilizes the motion of the manipulator so as to follow that of the reference model. The latter reduces tracking errors due to coupling disturbances by adjusting the local gains to such levels that override interactions and assure the stability of the overall system. Through several experimental results, it has been shown that the decentralized adaptive control scheme has better tracking performances comparing to the PID controller case as well as good disturbance(coupling) rejection property.

  • PDF

Optimization of Dual-arm Configurations for Efficient Handling of Objects (물체의 효율적인 이송을 위한 양팔 로봇의 최적 자세)

  • Park, Chi-Sung;Ha, Hyun-Uk;Son, Joon-Bae;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.130-140
    • /
    • 2011
  • This paper proposes an optimal posture for the task-oriented movement of dual arm manipulator. A stability criterion function which consists of three kinds of feature-representative parameters has been utilized to define the optimal posture. The first parameter is the force which is applied to the object. The torque of each joint and position of arm are attained from the current sensor and encoder, respectively. From these two data, the applied force to an object is estimated using sum of vectors of the joint torques estimated from the measured current. In order to investigate the robustness of each posture, the variation of the end-effector from the encoder information has been utilized as the second parameter. And for the last parameter for the optimality, the total energy consumption has been used. The total consuming energy of each posture can be computed from the current information and the battery voltage. The proposed robot structure consists of a mobile inverted pendulum and dual manipulators. In order to define the optimal posture for the each object, external disturbances are applied to the mobile inverted pendulum robot and the first and second parameters are investigated to find the optimal posture among the pre-selected most representative postures. Finally, the proposed optimal posture has been verified by the proposed stability criterion function which consists of total force to the object, the fluctuation of the end-effector position, and total energy consumption. The effectiveness of the proposed algorithms has been verified and demonstrated through the practical simulations and real experiments.

Vibration control of a single-link flexible manipulator using fuzzy- sliding modes (퍼지-슬라이딩 모드를 이용한 단일링크 유연 매니퓰레이터의 진동제어)

  • Choi, Seung-Bok
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 1996
  • This paper presents a new type of fuzzy-sliding mode controller for robust tip position control of a single-link flexible manipulator subjected to parameter variations. A sliding mode controller is formulated with an assumption that imposed parameter variations are bounded so that certain deterministic performance can be guaranted. In the design of the sliding mode controller, so called moving sliding surface is adopted to minimize the reaching phase and thus mitigate system sensitivity to the variations. The sliding mode controller is then incorporated with a fuzzy technique to reduce inherently ever-existing chattering which is impediment in position control of flexible manipulators. A set of fuzzy parameters and control rules are obtained from a relation between predetermined sliding surface and representative points in the state space. Computer simulations are undertaken in order to demonstrate superior control performance of the proposed methodology.

  • PDF

Development of the Maintenance Process Based on Graphic Simulation for the Parts of the Equipment at the outside of the MSM′s Workspace in a Hot Cell (그래픽 전산모사를 이용한 핫셀 사각지역 내 장치부품 유지보수공정 개발)

  • 이종열;김승현;송태길;박병석;윤지섭
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2003
  • In this study, the maintenance process by the servo manipulator has been developed for the parts of the equipment, which we unable to reach out by the Master-Slave Manipulator(MSM) in a hot cell. To do this, a virtual mock-up is implemented using the iか prototyping technology. Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass have been analyzed. In addition, the path planning of the servo manipulator using the collision detection function of the virtual mock-up has been established. From these, the maintenance process for the parts of the equipment, which are located at the outside of the MSM's workspace using the servo manipulator has been proposed and verified through the graphic simulation. It is revealed that the proposed remote maintenance process of the equipment can effectively be used in the real hot cell operation. It is also believed that the implemented virtual mock-up of the hot cell can effectively be applied in analyzing the various hot cell operation and enhancing the reliability and safety in a hot cell remote handling for the spent fuel management.

  • PDF

Development of the Maintenance Process by the Servo Manipulator for the Parts of the Equipment outside the MSM′s Workspace in a Hot Cell (소형 고하중 조작기를 이용한 사각지역 내 장치부품 보수공정 개발)

  • 이종열;김성현;송태길;박병석;윤지섭
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.337-344
    • /
    • 2003
  • In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators In the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effectively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel management.

  • PDF

Visualization of Virtual Slave Manipulator Using the Master Input Device (주 입력장치를 이용한 가상 슬레이브 매니퓰레이터의 시각화)

  • 김성현;송태길;이종열;윤지섭
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.388-394
    • /
    • 2003
  • To handle the high level radioactive materials such a spent fuel, the master-slave manipulators (MSM) are widely used as a remote handling device in nuclear facilities such as the hot cell with sealed and shielded space. In this paper, the Digital Mockup which simulates the remote operation of the Advanced Conditioning Process(ACP) is developed. Also, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed. The process equipment of ACP and Maintenance/Handling Device are drawn in 3D CAD models using IGRIP. Modeling device of manipulator is assigned with various mobile attributes such as a relative position, kinematics constraints, and a range of mobility, The 3D graphic simulator using the external input device of space ball displays the movement of manipulator. To connect the external input device to the graphic simulator, the interface program of external input device with 6 DOF is deigned using the Low Level Tele-operation Interface(LLTI). The experimental result shows that the developed simulation system gives much-improved human interface characteristics and shows satisfactory response characteristics in terms of synchronization speed. This should be useful for the development of work's education system in the virtual environment.

  • PDF