• 제목/요약/키워드: Manipulators

검색결과 765건 처리시간 0.028초

A Study on Control of Stable Grasping Motion for Finger Robot (손가락 로봇의 안정 파지 운동 제어에 관한 연구)

  • Choi, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.428-437
    • /
    • 2006
  • This paper attempts to derive and analyze the dynamic system of grasping a rigid object by means of two multi-degrees-of-freedom robot flngers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper. the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

An Efficient Iterative Inverse Kinematic Analysis for General Robot Manipulators Using Near Position (근접 위치를 이용한 일반적인 로봇 매니퓰레이터의 효율적인 반복적 역기구학 해석 문제)

  • 강성철;조소형;김문상;조선휘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제15권5호
    • /
    • pp.1640-1648
    • /
    • 1991
  • 본 연구에서는 이러한 편사 함수 최소화의 방법을 적용함에 있어 보다 안정된 수렴성과 계산 시간을 단축시키기 위하여 근접 위치 방법(near position method)을 개 발하여 적용하였다. 근접 위치 방법이란 이론적 해석법으로 풀기가 불가능한 기구학 을 갖는 6관절 로봇을 반복적 해석법을 사용한다는 것을 전제로 하여, 초기 위치를 목 표 위치에 가능한 근접하게 잡아서 반복 계산을 수행하는 방법으로써 로봇의 기구학적 자세에 따른 수렴의 불안정성을 방지하고, 계산 시간을 단축하는데 그 목적이 있다.

Kinematic Control of Double Pantograph Type Manipulator Using Neural Network (신경회로망을 이용한 더블 팬터그래프형 매니퓰레이터의 기구학적 제어)

  • 김성철;정원지;신중호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.20-24
    • /
    • 1997
  • In general, pantograph type manipulators are used for carrying heavy payloads with positional accuracy. In this paper, a double pantograph type manipulator, activated by two slider joints, is studied for applying to file handing machine in atomic power plant. In order to realize the stable horizontal movement of a heavy fuel rod whit good positional accuracy, methods for allocating slider and finding constant joint rates are proposed. In addition, the static deflection of the proposed mechanism was studied using transfer-stiffness matrix method. A neural network control algorithm which compensates static deflections is explored with computer simulations.

  • PDF

Path Design of Redundant Flexible Robot Manipulators to Reduce Residual Vibration in the Presence of Obstacles (충돌회피 및 잔류진동 감소를 위한 여유자유도 탄성 로봇 매니퓨레이터 경로설계)

  • Park, K.J.;Chung, K.
    • Journal of Power System Engineering
    • /
    • 제5권2호
    • /
    • pp.79-86
    • /
    • 2001
  • A method is presented for generating the path which significantly reduces residual vibration of the redundant, flexible robot manipulator in the presence of obstacles. The desired path is optimally designed so that the system completes the required move with minimum residual vibration, avoiding obstacles. The dynamic model and optimal path are effectively formulated and computed by using special moving coordinate, called VLCS, to represent the link flexibility. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables. A planar three-link manipualtor is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate path, in the presence of obstacles.

  • PDF

Robust Control of Robot Manipulator using Self-Tuning Adaptive Control (자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어)

  • 뱃길호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

Optimal Control of a Flexible Link Robot with Modelling Errors (모델링 오차를 갖는 유연 링크 로봇 최적 제어)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • 제6권6호
    • /
    • pp.791-800
    • /
    • 1996
  • Linear LQG controller has been investigated to control flexible link manipulators. The performance and complexity of these depend largely on the model upon which the controller is designed. In this study, the flexible modes of the link manipulator are considered to have uncertain parameters, which can be represented by random variable and these parameters are reflected on the weighting of performance. In this method, the exact modelling for the flexible modes is not necessary. The order of the resulting controller is much lower than the one based on a full model. Through numerical study, it is shown that the performance and the stability-robustness of the proposed controller reaches reasonably the one based on the full model.

  • PDF

High precision integration for dynamic structural systems with holonomic constraints

  • Liu, Xiaojian;Begg, D.W.;Devane, M.A.;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.283-295
    • /
    • 1997
  • This paper presents a high precision integration method for the dynamic response analysis of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved in the scheme is calculated precisely using $2^N$ algorithm. The Taylor expansions of the nonlinear term concerned with state variables of the structure and the generalized constraint forces of the ADEs are derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot manipulators.

Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control (유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • 제16권
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

PID regulator design for robot manipulators (로봇 매니퓰레이터에 대한 비례.적분.미분 조절기 설계)

  • Nam, Heon-Seong;Kim, Cheon-joong;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.647-651
    • /
    • 1992
  • This paper presents a model-based control scheme for a robot manipulator to track a desired trajectory as closely as possible in spite of a wide range of manipulator motions and parameter uncertainties of links and payload. The scheme has two components: a nominal control and a variational control. The nominal control, generated from direct calculation of the manipulator dynamics along a desired trajectory, drives the manipulator to a neighborhood of the trajectory. Then a discrete-time PID regulator is designed based on the linearized dynamic model and Linear Quadratic(LQ) method, which generates the variational control that regulates perturbations in the vicinity of the desired trajectory.

  • PDF